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The workshop is meant to foster interaction between the latin american
graph theory and combinatory researchers, whose research interests include
cliques, clique graphs, and the behavior of cliques and related issues. The
official languages are English, Portuguese and Spanish. This is the forth
edition of this workshop, after:

• Workshop Latino-Americano de Cliques em Grafos
April 17th - 19th, 2002.
Rio de Janeiro, Brasil.

• Second Latin-American Workshop on Cliques in Graphs
October 18th-20th, 2006.
La Plata, Argentina.

• Tercer Taller Latinoamericano de Clanes en Graficas
October 28th-31st, 2008.
Guanajuato, Mexico

During the meeting 32 scientific communications will be exposed and
there will be 4 plenary talks. We are very grateful to all the participants for
their contributions and particularly to the invited speakers for their interest.

The Scientific Committee
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On Independent Vertex Sets and Variants of
Matchings

Andreas Brandstädt
Department of Computer Science, University of Rostock, Germany

(joint work with Vassilis Giakoumakis, Chinh T. Hoàng, Van Bang Le,
Vadim V. Lozin, Raffaele Mosca and Ragnar Nevries)

In a finite undirected graph, a vertex set is independent (or stable) if
its vertices are pairwise nonadjacent. For given graph G, the Maximum
Independent Set (MIS) Problem asks for an independent vertex set of
maximum size in G. The MWIS problem is the vertex-weighted version of
MIS.

It is well known that clique separator decomposition and modular decom-
position are helpful tools for solving the MWIS problem. One of our results
allows to combine both of them. This implies various improvements of known
results, among them a polynomial time algorithm for MWIS on apple-free
graphs–a common generalization of chordal graphs, cographs and claw-free
graphs. We also discuss how to solve efficiently the MWIS problem on some
subclasses of hole-free graphs and of P5-free graphs.

A distance-k matching in graph G is a subset of edges whose pairwise
distance is at least k. Thus, the well-known notion of an induced matching
is the same as distance-2 matching. Obviously, a distance-k matching in G is
an independent vertex set in the k-th power L(G)k of the line graph L(G) of
G and vice versa. For given G, the Maximum Induced Matching (MIM)
Problem asks for an independent vertex set in the square L(G)2 of L(G).
Unlike the problem Maximum Matching, the MIM problem is NP-complete
even on very restricted bipartite graphs and on claw-free graphs. Many pa-
pers are dealing with the complexity of the MIM problem on particular graph
classes. We discuss the complexity of this problem and its generalization in
L(G)k for k ≥ 3 for some important graph classes.

The Dominating Induced Matching (DIM) Problem (also called Ef-
ficient Edge Domination (EED) Problem in various papers) asks for the
existence of an independent vertex set in L(G)2 which simultaneously is a
dominating set in L(G). We show that this problem is solvable in polynomial
time for hole-free graphs.
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Partitions of direct products of complete

graphs into independent dominating sets

Mario Valencia-Pabon∗

LIPN, Université Paris-Nord
Villetaneuse France

Keywords: Independent dominating sets, direct product graphs, complete graphs.

Let G = (V,E) be an undirected finite simple graph without loops. A
set S ⊆ V is called a dominating set if for every vertex v ∈ V \ S there
exists a vertex u ∈ S such that u is adjacent to v. A set S ⊆ V is called
independent if no two vertices in S are adjacent. A set S ⊆ V is called an
independent dominating set of G if it is both independent and dominating
set of G. A partition of the vertex set V into independent dominating sets is
called an idomatic partition of G. Clearly, an idomatic partition of a graph
G represents a proper coloring of the vertices of G. The maximum order
of an idomatic partition of G is called the idomatic number id(G) and this
parameter was introduced by Cockayne and Hedetniemi in 1977. Notice that
not every graph has an idomatic partition. For example, C5 has no idomatic
partition. The direct product G × H of two graphs G and H is defined by
V (G×H) = V (G)×V (H), and where two vertices (u1, u2), (v1, v2) are joined
by an edge in E(G×H) if {u1, v1} ∈ E(G) and {u2, v2} ∈ E(H).

In this talk, we give a full characterization of the idomatic partitions of
the direct product of three complete graphs by using an elementary algebraic
approach. This partially answer a question of Dunbar et al. 2000.
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Orientations of graphs

Zoltan Szigeti∗

G-SCOP, INPGrenoble, UJF, CNRS
Grenoble France

In this survey talk I will present results on orientations of graphs satisfying
connectivity and/or parity constraints. I will provide interesting applications,
connections between the results, open problems and nice conjectures.
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New results on Dually Chordal Graphs

Marisa Gutierrez ∗

CONICET, Departamento de Matemática
Universidad Nacional de La Plata, Argentina

Abstract

Dually Chordal Graphs appear independently in 3 articles with 3
different definitions and 3 different names [1, 2, 3]. Today it is very
clear for us that dually chordal is the most appropriate because this
class is dual in many ways to that of chordal graphs.

In this talk we shall give the new results that we have obtained
about dually chordal graphs.

It is known that the simplicial vertices realize the eccentricity and
the diameter in chordal graphs. We will show that this role is played
by vertices with maximum neighbor in dually chordal graphs and other
special vertices in related classes.

Dually chordal graphs can be characterized as those graphs owning
an spanning tree, called compatible tree, such that the family of cliques
(or the family of neighborhoods) induces a family of subtrees. We
prove that the family of all the minimal separators or any subfamily
obtained considering a minimal separator for each pair of non adjacent
vertices can be used to obtain similar characterizations.

Other property of dually chordal graphs related to cliques is that
a graph is dually chordal if and only if it is clique Helly and its clique
graph is chordal. We prove that the family of cliques can be replaced
by minimal separators in this context also.

Finally, by using the fact that the clique graph of a chordal graph is
a dually chordal graph we explore the relationship between the clique
trees of a chordal graph and the compatible trees of its clique graph.
These results allowed us answer if, given a set of vertices of a dually
chordal graph, there is a compatible tree that has this set as its leaves.

∗In cooperation with Pablo De Caria.
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Improved Algorithms for Minimum

Clique-Transversal Problem

J. Arregui M. Lin∗ F. Soulignac J. Szwarcfiter

Universidad de Buenos Aires
Buenos Aires Argentina

Keywords: clique-transversal, algorithms, 3K2-free circular-arc graphs.

A clique-transversal of a graph G is a subset of vertices intersecting all the
cliques of G. It is NP-hard to determine the minimum cardinality τc(G) of
a clique-transversal of G. Durán, Lin, Mera and Szwarcfiter [Ann Oper Res
157 (2008), pp. 37-45], proposed algorithms for determining this parameter
for several graph classes: (i) one for general graphs, which runs in O(n2τc(G))
time; (ii) one for 3K2-free circular-arc graphs in O(n4) time; (iii) one for
Helly circular-arc graphs in O(n) time. In present work, we improved the

time-complexities of (i) and (ii): an algorithm ofO(nτc(G)−1m
τc(G)

2 ) for general
graphs and an O(n)-time algorithm for 3K2-free circular-arc graphs. Also, we

give an algorithm of O(τc(G) ·max{τc(G),
√
m} · nm

τc(G)−2
2 ) time for dually-

chordal graphs.
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Biclique Transversal and Biclique

Independent Set

Marina Groshaus ∗ Juan Carlos Terragno

Universidad de Buenos Aires
Buenos Aires Argentina

Keywords: Biclique, transversals, independent set

A biclique of a graph G is a maximal complete bipartite induced subgraph
of G.

A biclique-transversal set of a graph G is a set of vertices intersecting all
bicliques of G. The biclique-transversal number τb(G) is the cardinality of
the minimum biclique-transversal set of G. A minimum biclique-transversal
set is a biclique-transversal set of cardinality τb(G).

A biclique-independent set of a graph G is a collection of vertex-disjoint bi-
cliques of G. The biclique-independent number αb(G) is the cardinality of the
maximum biclique-independent set of G. A maximum biclique-independent
set is a biclique-independent set of cardinality αb(G).

For any graph, it follows that αb(G) ≤ τb(G). When αb(H) = τb(H) for
every induced subgraph H of G, we say that G is biclique-perfect.

In this work we study the computational complexity of finding τb(G)
and αb(G). We prove that the problem of finding the minimum biclique-
transversal is NP-Hard and the maximum-independent set is NP-Complete
for the general case.

We also study these problem by restricting to some classes of graphs. We
present some classes for which finding αb and τb is NP-Complete and also
classes where these problems are polynomially solvable.

Finally, we present some biclique-perfect classes of graphs and some min-
imal biclique-imperfect graphs, and show that the difference between αb and
τb can be arbitrarily large.
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Algorithmic aspects of Steiner convexity and

enumeration of Steiner trees

Mitre C. Dourado1 ∗Rodolfo A. Oliveira1 Fábio Protti2

1 Universidade Federal do Rio de Janeiro
2 Universidade Federal Fluminense

Rio de Janeiro Brasil

Keywords: convex set, steiner tree, steiner interval.

In this work we study the algorithmic complexity of deciding if a vertex x
is in some W -Steiner tree, that is, if x is a candidate to be a Steiner vertex.
We also show how this problem is used to define a notion of Steiner convexity
in graphs. We design an algorithm for the enumeration of all Steiner trees
for a bounded number of terminals, which is the usual scenario in many
applications. We discuss algorithmic issues involving space requirements to
represent the optimal solutions and the time delay to generate them. Our
algorithm generates all W -Steiner trees with O(n) delay and O(α) space,
where n = |V (G)| and α is the number of W -Steiner trees.
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Alliances and Graph Convexity

M.C.Dourado1 L.Faria2∗ D. Rautenbach3 M.A.Pizaña4 J.
L. Szwarcfiter1

1Universidade Federal, and 2Universidade do Estado do Rio de Janeiro
Rio de Janeiro Brasil

3Technische Universität Ilmenau
Ilmenau Germany

4Universidad Autónoma Metropolitana
Mexico City Mexico

Keywords: alliance, convexity, hull set, max-snp, approximation

Let G = (V,E) be a graph, a set S ⊂ V is an alliance of G if for each
vertex v ∈ S, v and its neighbors in S are not outnumbered by the neighbors
of v in S = V \S, or |N [v]∩S| ≥ |N(v)∩S|, and S is called a co-alliance of
G. The anti-alliance interval Ia(S) of a set S ⊆ V is the set of the vertices
of S plus the vertices v of S having more neighbors in S than in S including
v or Ia(S) = S ∪ {v ∈ S, such that |N(v)∩ S| > |N [v]∩ S|}. The set S is an
anti-alliance set of G if Ia(S) = V , since no alliance is contained in V \ S.
The size of the smallest anti-alliance set of G is the anti-alliance number of
G, denoted by na(G). The size of the largest proper co-alliance ca(G) of
G is the anti-alliance convexity number of G. The size of the smallest co-
alliance of G containing S is the anti-alliance hull of S, denoted by Ha(S). If
Ha(S) = V (G) then S is an anti-alliance hull of G, and if S is minimum then
ha(G) = |S| is the anti-alliance hull number of G. We prove that computing
na(G) and ha(G) are Max SNP-hard problems for planar cubic graphs. It
is known that determining ca(G) is NP-hard for split graphs. Given an
ε–approximation for a minimum vertex cover of G = (V,E) we define in
polynomial time an ε2∆+δ+2

δ+2
–approximation for na(G) of G = (V,E), where

∆ and δ are the maximum and the minimum degrees of G. If G = (V,E)
is a d-regular graph, we prove that the problem of determining ca(G) is
polynomial when d ≤ 5, and that given a 6-regular graph G = (V,E) and a
fixed vertex v ∈ V it is NP-complete to decide whether there is an alliance
S of G containing v with size |S| ≤ k. We prove that it is a polynomial
problem to determine the anti-alliance number when G = (V,E) is a tree.
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Convex Covers of Graphs1

Danilo Artigas∗ Simone Dantas

Mitre C. Dourado Jayme L. Szwarcfiter

RCT, Universidade Federal Fluminense, Rio das Ostras, Brazil
IM and NCE, Universidade Federal do Rio de Janeiro, Rio de

Janeiro, Brazil

Keywords: Convexity, covering of graphs, partition of graphs.

We consider only finite, simple graphs. Let G be a graph and S ⊆ V (G),
its closed interval I[S] is the set of vertices lying on shortest paths between
any pair of vertices of S. The set S is convex if I[S] = S. In this work we
define the concept of convex cover of graphs. A graph G has a convex p-cover
if V (G) can be covered by p convex sets, i.e., there exists V = (V1, . . ., Vp),
p ∈ N, such that V (G) =

⋃
1≤i≤p

Vi; for 1 ≤ i ≤ p, Vi is convex and Vi 6⊆
⋃

1≤i≤p
i 6=j

Vj.

The concept of convex cover is related to convex partition which was
proposed in [1]. The convex p-partition of a graph is a particular case of
convex cover where all the sets of V are disjoints. In a different context, A.
Prisacaru considered, in his PhD. Thesis, the problem of covering a set of
vertices by convex sets.

In this work, we prove that it is NP -complete to decide if a graph G
has a convex p-cover for a fixed integer p ≥ 3. We show that all connected
chordal graphs have a convex p-cover, for any integer 1 ≤ p ≤ n. We also
establish conditions on n and k to decide if a power of cycle has a convex
p-cover. Finally, we develop an algorithm for disconnected graphs.

References

[1] D. Artigas, M. C. Dourado, J. L. Szwarcfiter. Convex partitions of graphs. Elec-
tronic Notes on Discrete Mathematics 29 (2007) 147–151, EuroComb’07 - European
Conference on Combinatorics, Graph Theory and Applications, Sevilla, Spain.

1This research was partially supported by CNPq and FAPERJ.
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Biclique-Coloring

Marina Groshaus Francisco Soulignac Pablo Terlisky∗

FCEyN, Universidad de Buenos Aires
Buenos Aires Argentina

Keywords: bicliques, computational complexity, graph coloring, biclique col-
oring.

A k-clique-coloring of a graph is an assignment of k colors to its vertices such
that every clique has at least two vertices with different colors. For k ≥ 2, the
problem of deciding if a graph is k-clique-colorable is Σp

2-complete, though it
is easier for some graph classes.
In this work, we study the computational complexity of the k-biclique-coloring
problem, which we define as the analogue of the k-clique-coloring for bi-
cliques. That is, a k-biclique-coloring of a graph is an assignment of k colors
to its vertices such that every biclique has at least two vertices with different
colors.
We prove that the k-biclique-coloring problem is Σp

2-complete for k ≥ 2, even
for K3,3-free graphs, and show that it is NP-Complete for k ≥ 2 on the class
of split graphs and for k = 2 on the class of (W4, dart, gem)-free graphs.
Also, we show that it can be solved in polynomial time for threshold graphs,
block graphs and graphs in which every edge belongs to a single biclique.

18



Clique-perfectness of complements of line

graphs2

F. Bonomo G. Durán M.D. Safe∗ A.K. Wagler

U. de General Sarmiento, U. de Buenos Aires, and CONICET
Los Polvorines, Buenos Aires, Argentina

Keywords: clique-perfect graphs, complements of line graphs, perfect graphs

A clique-transversal of a graph G is a subset of vertices that meets all the
maximal cliques of G. A clique-independent set is a collection of pairwise
vertex-disjoint maximal cliques. The clique-transversal number and clique-
independence number of G are the sizes of a minimum clique-transversal
and a maximum clique-independent set of G, respectively. A graph G is
clique-perfect if these two numbers are equal for every induced subgraph
of G. Unlike the class of perfect graphs, the class of clique-perfect graphs
is not closed under complementation neither a characterization by minimal
forbidden induced subgraphs is known. Nevertheless, partial results in this
direction have been obtained; i.e., characterizations of clique-perfect graphs
by a restricted list of forbidden induced subgraphs when the graph is known
to belong to certain graph classes. For instance, in [1], a characterization
of those line graphs that are clique-perfect is given in terms of minimal for-
bidden induced subgraphs. We studied clique-perfectness of complements of
line graphs. Precisely, the main result of this work is a characterization of
the clique-perfectness of all complements of line graphs in terms of minimal
forbidden induced subgraphs.

References

[1] F. Bonomo, M. Chudnovsky, and G. Durán. Partial characterizations of
clique-perfect graphs I: Subclasses of claw-free graphs. Discrete Applied
Mathematics, 156(7):1058–1082, 2008.

2This work was partially supported by ANPCyT PICT-2007-00518, UBACyT Grant
X069 and CONICET PIP 112-200901-00178.
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In path graphs there is a path model that

realizes the leafage

Marisa Gutierrez † Silvia B. Tondato∗

Universidad Nacional de La Plata, Conicet †
La Plata, Argentina

Keywords: path graphs, clique trees, leafage.

Chordal graphs were defined as those graphs which have not induced
cycles of 4 or more vertices. Subsequently, Gavril [1] prove that a graph G
is chordal if and only if it has a clique tree, i. e. a tree T whose vertices are
cliques of G and such that for every vertex x of G, Cx, clique of G containing
x, induces a subtree of T .

Interval and path graph(UV ) graphs are subclasses of chordal graph and
they can be characterized by clique trees. A graph G is a path graph(UV )
if there exists T a tree such that every Cx induces a path in T , it is called
path model of G. Clearly Interval ⊂ UV .

The leafage of a chordal graph [2], denoted l(G) is the minimun number
of leaves of its clique trees. A clique tree T of G realizes the leafage if the
number of leaves of T is exactly l(G).

Clearly, if G is an Interval graph, there is T a clique tree of G that is a
path that realizes the leafage, i.e the number of leaves of T is l(G). By the
before exposed, it is natural to ask: if G is a path graph then is there a path
model that realizes the leafage? In this work, we answer this question.

References

1. F. Gavril, The intersection graphs of subtrees in trees are exactly the
chordal graphs, Journal of Combinatorial Theory (Series B) 16 (1974),
47–56.

2. I. Lin, T. McKee and D. B. West, The leafage of a chordal graphs,
Discussiones Mathematicae, Graph Theory, 18 (1998), 23–48.
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An evidence for Lovász conjecture about

Hamiltonian paths and cycles

A. da C. Ribeiro∗ C. M. H. de Figueiredo L. A. B. Kowada

COPPE, Universidade Federal do Rio de Janeiro

Keywords: Cayley graphs, Hamiltonian cycle, Lovász conjecture, graph Hl,p.

It was conjectured by Lovász that every connected vertex-transitive graph
has a Hamiltonian path [1]. So far, only four connected vertex-transitive
graphs with more than two vertices but without Hamiltonian cycles are
known [2]. These four graphs have Hamiltonian paths. However, since none
of these four graphs is a Cayley graph, we can look at the Lovász conjecture
as stating that every connected Cayley graph with more than two vertices
has a Hamiltonian cycle.

In this work, we show some properties of the gadget graph Hl,p which
was used by Holyer to prove the NP−completeness of the edge partition
into cliques problem [3]. We show that this graph is a Cayley graph and
present a construction of a Hamiltonian cycle, which corroborates the Lovász
conjecture.

References

[1] LOVÁSZ, LÁSZLÓ. Problem 11. In Combinatorial Structures and their Applications.
Gordon and Breach, 1970.
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on Computing, 10 (1981), number 4, pages 713-717.
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A necessary condition for EPT graphs

Marisa Gutierrez Liliana Alcón Maŕıa Ṕıa Mazzoleni ∗

Universidad Nacional de La Plata
La Plata, Argentina

Keywords: intersection graphs, EPT graphs, forbidden subgraphs.

An (h, s, t)-representation of a graph G consists of a collection of subtrees
of a tree T , where each subtree corresponds to a vertex in G, such that (i) the
maximum degree of T is at most h, (ii) every subtree has maximum degree at
most s, (iii) there is an edge between two vertices in the graphs G if and only
if the corresponding subtrees have at least t vertex in common in T . The
class of graphs that have an (h, s, t)-representation is denoted by [h, s, t]. It is
known that [3, 2, 2] is the class of chordal EPT-graphs and [4, 2, 2] is the class
of weakly chordal EPT-graphs. We want to find a list of forbidden subgraps
for the (3, 2, 2)-graphs.

Let C be a clique of G. A vertex v of G is a satellite of C if Bv = N(v)∩C
is a non-empty proper subset of C. Bv is called the base of v and it is said
minimal if no other base of a satellite of C is properly contained in Bv. In
this work we prove the following theorem:

Theorem: Let C be a clique of an EPT graph G. If w ∈ C then w belongs
to at most two minimal bases of satellites of C.

We characterize the minimal graphs which do not satisfy the condition of
the previous theorem, as a consequence we present a finite family of forbidden
subgraphs for the class EPT and thus for the class [3,2,2].

S1 S2 S3

Figure 1: Forbidden induced subgraph for EPT-graphs
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Many structural properties of interval graphs have been studied and NP-
complete problems for general graphs have been efficiently solved for this
class of graphs. However, a basic problem related to them remains open
despite the effort devoted.

Given an interval graph G, the interval count problem is that of deter-
mining the smallest number IC(G) of interval lengths needed to represent
an interval model of G. The question of deciding whether IC(G) = 1 is
equivalent to that of recognizing whether G is a unit-interval graph, a prob-
lem for which well-known linear-time algorithms exist. On the other hand,
it is neither known whether the complexity of deciding if IC(G) = k is
polynomially-time solvable, nor if the problem is NP-complete, for any fixed
k ≥ 2. Restricted to graph classes, the efficient computation of interval
counts is known only for trees, threshold graphs, almost-K1,3-free graphs,
and starlike-threshold graphs.

In this work, we provide a short survey on the interval count and related
problems. We present polynomial-time algorithms to compute the interval
count of generalized-threshold graphs and extended-bull-free graphs (a gen-
eralization of trivially perfect graphs), the latter class containing instances
of graphs with arbitrary interval count values. To our knowledge, there are
no other subclasses of interval graphs for which it is currently known how to
compute their interval counts efficiently.
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Snarks are cubic bridgeless graphs of chromatic index 4 which had their
origin in the search of counterexamples to the Four Color Theorem. In 2003,
Cavicchioli et al. [2] proved that for snarks with less than 30 vertices, the
total chromatic number is 4, and proposed the problem of finding (if any)
the smallest snark which is not 4-total colorable. The only known families of
snarks that had their total chromatic number determined to be 4 were the
Flower Snark family and the Goldberg family [1].

Recently, we proved that the Loupekhine family and the Blanusa families
are 4-total colorable. We constructed additional snark families using the dot
product and we determined that their total chromatic number is 4 [3].

The 4-total coloring of Blanusa families uses two fixed 4-total colorings
of the Petersen graph without two adjacent vertices. In this work, we prove
that it is not possible to use only one fixed 4-total coloring for this graph.
Moreover, we show properties about 4-total coloring of the square product
and the star product, operations to construct snarks. Finally, we prove that
the star product between Loupekhine, Goldberg and Flower snarks are 4-
total colorable.
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The problem discussed in this work is the Adjacent Vertex-Distinguishing
Total Coloring (ADVTC) of graphs, which asks for the minimum proper total
coloring of a graph with an additional property: if two vertices are adjacent
in a graph, then there must be at least one color that is used by one of them
and not used by the other. The meaning of used in this context is that a
color is used by a vertex if it is the color of that vertex or the color of some
edge incident to that vertex.

This problem was introduced by Zhang et al. [1], that denoted as χat(G)
the minimum number of colors of an ADVTC of a graph G. They solved the
problem for cycles, complete graphs, fans, complete bipartite graphs, paths,
and trees. Moreover, they conjectured that χat(G) ≤ ∆(G) + 3. Later,
Chen [2] showed that this conjecture holds for graphs with ∆(G) = 3.

Indifference graphs are graphs whose vertices can be linearly ordered in
such a way that the vertices of any maximal clique appear consecutively in
the order. The problems of edge and total coloring for these graphs have
been solved only under special conditions.

In this work, we show that the conjecture of Zhang et al. holds for indif-
ference graphs. We show also optimal ADVTC for indifference graphs with
odd maximum degree and at least two adjacent maximum-degree vertices.
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A k-L(2, 1)-coloring of a graph is an assignment of colors in {0, . . . , k}
to its vertices such that adjacent vertices get colors at least two apart, and
vertices at distance two get distinct colors. Let λ(G) be the minimum value
of k such that there exists a k-L(2, 1)-coloring of G.

The problem of computing λ(G) arises in the context of the radio fre-
quency assignment problem and has been widely studied [3]. This problem
is NP-hard even when restricted to split graphs [2]. Although there are
linear-time algorithms for computing λ(G) of bipartite chain graphs [1] and
P4-tidy graphs [4], the problem is still open both for proper interval graphs
and bipartite permutation graphs. We show results on computing λ(G) when
G belongs to the class of split permutation graphs, a subclass of hereditary
clique-Helly graphs.
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The Classification Problem is the problem of deciding whether a simple graph
has chromatic index equals to ∆ or ∆ + 1. In the first case, the graphs are
called Classe 1, otherwise, they are Class 2. It is NP-complete to decide if
a graph has chromatic index equals to ∆ whereas it is co-NP-complete to
decide if the chromatic index is equals to ∆ + 1.

A simple graph G = (V,E) is overfull when |E| > ∆
⌊
|V |
2

⌋
. If G has

an overfull subgraph H with ∆(H) = ∆(G), then G is called subgraph-
overfull. When the overfull subgraph H is induced by a ∆(G)-vertex v and
its neighbors, denoted by N [v], then G is a neighborhood-overfull graph.
Overfull, subgraph-overfull and neighborhood-overfull graphs are Class 2.
According to the famous Overfull Conjecture, being Class 2 is equivalent to
being subgraph-overfull, when the graph has ∆(G) ≥ |V (G)|

3
.

A split graph G is a graph whose vertex set admits a partition (Q,S) into
a stable set S and a clique Q. Figueiredo et al. shows that every subgraph-
overfull split graph is in fact neighborhood-overfull. In the same article, they
conjecture that every Class 2 chordal graph is neighborhood-overfull. It is
known that a split graph is a chordal graph.

Let’s assume that Q is a maximal clique of a split graph G and let d(Q) =
∆(G)−|Q|+1. We show that G is neighborhood-overfull if and only if ∆(G)
is even, d2(Q) < |Q| − 1, and G has a minimum number of twin ∆(G)-
vertices v such that G[N [v]] is overfull. We also show that for neighborhood-

overfull split graphs, ∆(G) > |V (G)|
3

. Therefore, for split graphs the above two
conjectures are equivalent. If these conjectures are true, our characterization
gives the unique Class 2 split graphs.

3This research was partially supported by CAPES and CNPq (140709/2008-8,
482521/2007-4, and 306461/2009-9).
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The problem of recognizing clique graphs in a graph class A consists in,
given any graph G ∈ A, to determine if G is a clique graph. When A is the
class of all graphs the problem is NP-complete4. When A is contained in the
class of Clique Helly graphs the problem is trivial since every clique Helly
graph is a clique graph5.

We are interested in determining a class A, not contained in Clique Helly
graphs, for which the problem is polynomial. Up to now, no such a class is
know. The present work considers the class of split graphs as a possible such
class. As an approach to the matter, we prove the following two theorems.

Let G be a split graph, V (G) = S ∪K, S a stable set, K a complete set
and K =

⋃
s∈S N(s).

Theorem 1: If | S |≤ 3, then G is a clique graph if and only if G is not
the Hajós graph.

Figure 2: The Hajós graph.

Theorem 2: If no N(s), s ∈ S, is contained in the union of the remaining
N(t), t ∈ S \ {s}, then G is a clique graph.

Notice that one theorem does not imply the other and that they resolve
the problem for two subclasses of split graphs not contained in Clique Helly
graphs.

4L.Alcón, L.Faria, C.M.H. de Figueiredo, M.Gutierrez, Theoretical Comput. Sc. 2009.
5R. Hamelink, A partial characterization of clique graph, J.Combin.Theory B, 1968.
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The Cluster Editing Problem is defined as follows: given as input an undi-
rected graph G = (V,E), by adding edges to G and/or removing edges from
G, it must be transformed into a cluster graph, that is, an union of disjoint
cliques. The cluster editing problem was proved to be NP-complete and mod-
els several practical possible applications in the fields of image processing,
computational biology and more.

This work focuses on the classic non-weighted cluster editing problem.
Integer programming and heuristic techniques are used. Two algorithms for
instance generation are presented. A graph-theoretic formulation of the prob-
lem is used to exactly solve instances. However, due to the excessive amount
of time needed to solve harder instances, two new heuristics are proposed
for solving the problem in these cases. As future work, the development of
more sofisticated algorithms, like meta-heuristics and hybrid algorithms, are
planned in hope of producing better results.
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There are various definitions of a gene cluster determined by two genomes
and methods for finding these clusters. However, there is little work on char-
acterizing configurations of genes that are eligible to be a cluster according
to a given definition. For example, in the ancestor of two genomes, which
sets of genes could possibly reflect a cluster in the two daughter genomes?
i.e. given a set of genes in a genome is it always possible to find two genomes
such that their intersection is exactly this cluster? In one version of this
problem, we make use of the graph theoretical definition of a cluster in [1].

Let VX to be the set of n markers in the genome X. These markers are
partitioned among a number of total orders called chromosomes. For markers
g and h in VX on the same chromosome in X, let gh ∈ EX if the number of
genes intervening between g and h in X is less than θ, where θ ≥ 1 is a fixed
neighbourhood parameter. We call GX = (VX , EX) a θ-adjacent graph if its
edges are determined by a neighbourhood parameter θ (powers of paths P θ

n).
Then the problem can be reformulated as follows: given a graph G, does

there exist two θ-adjacency graphs GS = (VS, ES) and GT = (VT , ET ), such
that G ⊆ GS ∩GT , i.e. V ⊆ VS ∩VT 6= ∅ and E ⊆ ES ∩ET ? In this work, we
study the case when G is an unit interval graph and we show an algorithm
which positively answer the question by presenting graphs GS and GT . We
then discuss the minimality of θ.
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A set C of vertices of a graph G is p3-convex if v ∈ C for every path
uvw ∈ G with u,w ∈ C. The p3 interval I3[v, w] of a pair of distinct vertices
v, w ∈ V (G) is the set formed by v, w and the vertices lying in some v − w
path of order three. For S ⊆ V (G), let I3[S] =

⋃
v,w∈S(I3[v, w]). If S ⊂ V (G)

and I3[S] = S1, I3[S1] = S2, ..., I3[Sn] = V (G) then S is a p3 hull set of G.
The p3 convex hull of S is the smallest p3 convex subset of G containing S.
The p3 hull number of G is the minimum cardinality of a subset S whose p3

convex hull is the entire graph.
The problem of finding the p3 hull number is NP-complete for general

graphs [1]. Using the irreversible conversion model [1] we present a solution
for the p3 hull number of chordal graphs.
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Given a graph G and a collection C of subsets of V (G), the pair (G, C)
is a graph convexity if ∅, V (G) ∈ C, and C is closed under intersection. The
sets of C are called convex sets. The convex hull of S, with respect to some
convexity C, is the smallest set HC[S] in C containing S.

In a graph convexity (G, C), the Carathéodory number is the smallest
number c such that for every S ⊆ V (G) and p ∈ HC[S], there exists F ⊆ S
with |F | ≤ c such that p ∈ HC[F ]. It is known that the Carathéodory number
for the monophonic convexity is 1 for complete graphs, and 2 for other graphs,
[2]. In [1], has been shown that c = 2 for the triangle path convexity. There
are also results for a convexity in multipartite tournaments where c ≤ 3, [3].

In this work, we show that the Carathéodory number for the P3 (2-path)
convexity is unbounded. Moreover, for every integer k ≥ 1 we construct a
graph having Carathéodory number k.
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Decompositions by clique separators are useful for efficiently solving graph
problems in many classes of graphs. In (Decompositions by clique separa-
tors. Discrete Mathematics, 55, pages 221–232, 1985) R. Tarjan designed an
O(nm)-time algorithm to decompose a graph with n vertices and m edges
by clique separators. In a note at the end of his paper, he indicated how to
modify the algorithm to perform decompositions by maximal clique separa-
tors.

We present a minimal example showing that the proposed modification is
not sufficient. We also provide an algorithm retaining the same complexity.
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The Maximum Clique Problem (MC) is the problem of finding a clique of
maximum size on a given graph. The problem is NP-hard and there exists
an ε > 0 such that the problem cannot be approximated in polynomial time
up to a factor of nε, where n is the number of the vertices in the graph.

There are a number of proposed algorithms for the exact solution of MC
whose performance is surprisingly good. Indeed, such algorithms are reported
to effectively solve instances of practical interest in several domains. Branch
and Bound schemes stand out in the literature as one of the best approaches
for the exact solution of MC in practice.

More often than not, these algorithms are presented in the literature
from an experimental standpoint, where running times for several testing
benchmarks are given and commented upon, but little or none analytical
results are given in support of the verified performance.

In this talk we review some Branch and Bound algorithms for the Max-
imum Clique Problem from a unifying point of view. This is part of an
ongoing effort aiming at a better understanding of the performance of these
algorithms, their strengths and limitations.
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We present some graph coloring problems that are generalizations of the clas-
sical vertex coloring, and can be applied to model several kinds of scheduling
problems. So, in this work we review some variants of graph coloring, such
as precoloring extension, µ-coloring, (γ, µ)-coloring, list coloring, list channel
coloring, and so on, discussing their applications in scheduling theory. We
also review some complexity results related to coloring and list channel color-
ing. A special scheduling problem, 1|pj = p; rj|− in 3-field notation, involving
single machines and equal-time jobs is considered, and for this problem, we
present two different models, the first one based on a collection of cliques
and stable sets, and the second based on a variation of (γ, µ)-coloring and
list channel coloring problems.
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The cartesian product of graphs is one of the operators in Graph Theory.
In this work, we have developed several properties related to the existence
of perfect and almost-perfect matchings in the product graph, by analyzing
its factors. Properties of the matching preclusion number of the product
graph were also studied. The matching preclusion number of a graph G,
denoted by mp(G), is the minimum number of edges that must be removed
from E(G) such that the resulting graph admits no perfect/almost-perfect
matching. It is a topological criterion in interconnection networks, related
to edge fault-tolerance; for instance, in some multiprocessor systems, where
it is crucial that each processor has a special partner at any given time.
The theoretical results obtained in this work lead to the determination of
the matching preclusion number of several topologies based on the cartesian
product: Hyper Petersen, Folded Petersen, Folded Petersen cube, Hyperstar,
Star-cube and Hypercube (for this latter topology, it was already known). We
have also shown that if two topologies with even number of vertices each are
optimal with respect to the matching preclusion number then their cartesian
product also has this property.
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In the investigation reported in this abstract we extend the applicability
of rank divergence (a stronger notion than clique divergence) by introducing
some elementary operations that preserve rank divergence. The ideas in-
volved in this study may be generalized and may lead to new, more powerful
techniques to deal with such problems. We consider this work to be a step
towards the solution of the projective plane conjecture that every Whitney
triangulation of the projective plane is clique divergent.

For undefined terminology see ”Graph Relations, Clique Divergence and
Surface Triangulations” Larrión et al. (2006). As usual, we denote by N(x)
the subgraph induced by the neighbors of x, and by Cn the graphs which is a
cycle on n vertices. We say that A admits B if there is an admissible relation
from B to A. It is known that if A admits B and B is rank divergent, then
so is A. Then we have the following:

Theorem 1. Let xy be an edge of A = (A,α), with N(x) ∼= C4
∼= N(y)

and assume α to be involutive (α2 = 1). Let B be the graph obtained from
A by contracting the edges xy and α(x)α(y). Then K2(A) admits B.

Theorem 2. Let xy be an edge of A = (A,α), with N(x) ∼= C4 and
N(y) ∼= C5 and assume α to be involutive. Let B be the graph obtained from
A by contracting the edges xy and α(x)α(y). Then K4(A) admits B.

Theorem 3. Let a− b− y− c−d be an induced path in B = (B, β) such
that N(x) = {a, b, y, c, d} for some vertex x and assume β to be involutive.
Let A be the graph obtained from B by replacing the edge xy by the edge bc
and the edge β(x)β(y) by the edge β(b)β(c). Then K2(A) admits B.

Examples of the usability of these theorems will also be presented.
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Given a simple graph G, a set C ⊂ V (G) is called a complete if all of
its vertices are pairwise adjacent. And it is a clique if no other complete
contains it. The clique graph of G has all the cliques of G as vertices and
two of them are adjacent if and only if their intersection is not empty. If G
denotes the class of all graphs, the function K : G → G that assigns to each
graph its clique graph is called the clique operator. The exponential notation
Kn will indicate the composition of the clique operator with itself n times.

It has been an open question for many years whether K(G)=K2(G). It
has been suspected that the equality is false, and some partial results on that
direction had been obtained [1].

Define the n-dimensional octahedron On as the complement of nK2. It
will be proved here, with the aid of [2], that O4 is in K(G)−K2(G). The proof
is broken into two steps. In first place, K−1(O4) is characterized thanks to
the fact that any graph there has O3 as an induced subgraph. And then it
is proved that no graph in K−1(O4) is a clique graph, from which the claim
that O4 6∈ K2(G) immediately follows.
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Let K(G) be the clique graph of a graph G. A m-weighting of K(G)
consists on giving to each m-size subset of its vertices a weight equal to the
size of the intersection of the m corresponding cliques of G. We will denote by
Km1,...,m`(G) the clique graph of G with weightings of sizes m1, . . . ,m`. In [1]
and [2], 2-weighted clique graphs were considered in the context of chordal
graphs. In this work we obtain a characterization of weighted clique graphs
similar to Roberts and Spencer’s characterization for clique graphs [3].

Some graph classes can be naturally defined in terms of their weighted
clique graphs, for example clique-Helly graphs and their generalizations,
and diamond-free graphs. The main contribution of this work is to char-
acterize several graph classes by means of their weighted clique graph. We
prove a characterization of hereditary clique-Helly graphs in terms of K3 and
show that K1,2 is not sufficient to characterize neither hereditary clique-Helly
graphs nor clique-Helly graphs. Similar results are obtained for split graphs
and for chordal graphs and their subclasses UV graphs, interval graphs, in-
difference graphs, trees and block graphs.

References

[1] M. Gutierrez, J. Szwarcfiter, and S. Tondato, Clique trees of chordal
graphs: leafage and 3-asteroidals, ENDM 30 (2008), 237–242.

[2] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory ,
SIAM, Philadelphia, 1999.

[3] F. Roberts and J. Spencer, A characterization of clique graphs, J. Com-
bin. Theory, Ser. B 10 (1971), 102–108.

39



Parameterized Tractability of Cost Problems

for X-of-Y Graphs.
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In this work, we show some polynomial cases for the minimum cost prob-
lem for X-of-Y graphs. Then, we prove that this problem is NP-hard.
From the point of view of the parameterized complexity theory proposed
by Downey and Fellows, we introduce two new problems: the k-maximum
cost for X-of-Y graphs, and the k-cost for X-of-Y graphs, where we proved,
unless P = NP , that the k-maximum cost problem for X-of-Y graphs is
fixed-parameter intractable, and the k-cost problem for X-of -Y graphs is
fixed-parameter intractable even if the input is an X-of-Y tree.
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Let IF 3
q denote the set of all vectors x = (x1, x2, x3) with length 3 and

components xi taken on the field IFq with q elements, where q is a prime or
a prime power. This set becomes a metric space by defining the Hamming
distance d(x, y) between the words x and y as the number of components in
which x and y differ. A subset C in IF 3

q is an covering of IF 3
q iff for every

vector x in IF 3
q , there is a vector y in C such that d(x, y) ≤ 1. The number

Kq(3, 1) denotes the minimum cardinality of a covering of IF 3
q . Kalbfleish

and Stanton, in 1969, showed that Kq(3, 1) = dq2/2e. The generalization
for higher dimensions has been extensively investigated by many researchers
since the paper by Taussky and Todd in 1948.

A closely related problem is described below. A subset H of IF 3
q is a

short covering of IF 3
q when IFq.H = {α.h : α ∈ IFq and h ∈ H} is a covering

of IF 3
q . The induced extremal problem cq(3, 1) is defined as the minimum

cardinality of such subset H. Both problems can be reformulated in terms
of graph theory.

In this talk, we introduce two extremal problems in combinatorial num-
ber theory aiming to discuss a known connection between the corresponding
coverings and sum-free sets. Also, we provide several bounds on these maps
which yield new classes of coverings, more precisely,

1. if q is odd, then cq(3, 1) ≤ 6
⌈
q−1
12

⌉
+ 6

⌈
log4( q−1

4
)
⌉

+ 3;

2. if q is even, then cq(3, 1) ≤ 6
⌈
q−1

9

⌉
+ 6

⌈
log4( q−1

3
)
⌉

+ 3.
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One of the main operations of genome rearrangement is the transposition
(exchange of contiguous blocks). To date, no known polynomial algorithm
to compute the minimum amount of operations needed to transform one
sequence to another (transposition distance) between two permutations [1], or
equivalently transform a sequence on the identity permutation. It is unclear
whether this problem is NP -hard. The exact distance is known for few cases
[2, 3, 4].

We show how to sort a lonely permutation type Un,3 [3] applying
⌊
n
2

⌋
+ 1

transpositions. Thus, if 4 divides n + 1 then the transposition distance
dt(Un,3) =

⌊
n
2

⌋
+ 1, and if 4 does not divide n + 1, we have that

⌊
n
2

⌋
≤

dt(Un,3) ≤
⌊
n
2

⌋
+ 1. So, we obtained additional exact values for the transpo-

sition distance.
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Let G be a simple graph. Let A = A(G) and D = D(G) be the adjacency
matrix and the vertex degree diagonal matrix of G, respectively. Let L =
L(G) = D(G) − A(G) be the Laplacian matrix of G and Q = Q(G) =
D(G) +A(G) the signless Laplacian matrix of G. For each of the associated
matrices of G, M = A,L, or Q, we call M -spectrum of G the spectrum of
the matrix M . A graph G is called M -integral when all eigenvalues of M are
integer numbers. In this work we present the KKj

n graphs, obtained from
two copies of the complete graph Kn by adding j edges, 1 ≤ j ≤ n, between
a vertex of one of the copies and j vertices of the other. We determine the
M -characteristic polynomial of this graph. Finally, we give conditions for a
graph KKj

n to be M -integral.
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Motion planning consists in tracing a motion for a robot that starts from a
initial point qini and finishes at a destination point qend in a static workspace,
avoiding collision with the scenes’ obstacles and finally returning the move-
ment, if it exists. The motion planning problem has some variations, of which
one of the most common is realistic input scenes.

There are mainly two philosophies that solve motion planning: explicit
construction and sampling. The former consists in constructing the space
explicitly and the latter consists in sampling points where the robot could be
placed. In addition, the second philosophy has faster algorithms. Neverthe-
less, we don’t have all the space sampled, thus we are dealing with partial
information about the obstacles. This is a trade-off between the two main
philosophies. We present in this work a faster way than Overmars et al. [1]
to solve the variation of realistic input scenes where the objects are fat, i.e.,
have similar directional width in all directions, using the latter philosophy
with advantages from both philosophies.

References

[1] A. F. van der Stappen, M. H. Overmars, “Motion planning amidst fat obstacles”, in
SCG’94: Proceedings of the Tenth Annual Symposium on Computational Geometry,
New York, NY, USA: ACM, 1994, pp. 31–40.

44


