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Welcome from Marina Groshaus (Chair)

Welcome to Buenos Aires for celebrating the fifth edition of the Latin American Workshop on
Cliques in Graphs. The first Latin American Workshop on Cliques in Graphs was held in Rio de
Janeiro in 2002, and was born in honor to Jayme Szwarcfiter in his sixty birthday. Ten years has
passed since then, and this time we have the great pleasure to celebrate the 10th anniversary of
the workshop along with Jayme’s 70th birthday.

In its origins, the workshop was meant to foster interaction between the Latin-American graph
theory and combinatorics researchers, whose interests include cliques, clique graphs, the behavior
of cliques, and related issues. In this ten years the community has grown and the workshop
has become not only a place for exchanging ideas on cliques, but a moment to strengthen the
relationships between its community members as well as to start new relations.

We want to thank the Steering Committee for trusting us the organization of this edition of the
workshop, the Program Committee for their help in organizing the sessions, the invited speakers
for their enthusiastic participation, and all the authors for their contributed talks. We are also
grateful to Rosiane de Freitas, Adriana Pimenta Figueiredo, Mitre Costa, Fábio Protti, and Celina
Figueiredo for their collaboration in the organization of the social events.

Finally, we thank all the participants for their support to the conference, and we hope you have a
pleasant, interesting and joyful stay. Enjoy the workshop!

Marina Groshaus (Chair)
On behalf of the Organizing Committee.
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Cliques and Relatives – Bounds and
Structures

Dieter Rautenbach

Universität Ulm, Germany

In this talk I will survey recent results concerning cliques in graphs and their
relatives.
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Solitaire Clobber played on cartesian
product of graphs∗

Simone Dantas1 Sylvain Gravier2 Telma Pará3

1 IME, Fluminense Federal University, Brazil.
2 CNRS/UJF, Institut Fourier, SFR Maths à Modeler, France.

3 COPPE, Federal University of Rio de Janeiro, Brazil.

Solitaire Clobber is a one-player combinatorial game where black and white
stones are located on the vertices of a given graph. A move consists of picking
a stone and clobbering another one of opposite color located on an adjacent vertex;
the clobbered stone is removed from the graph and it is replaced by the picked one;
the goal is to find a succession of moves that minimizes the number of remaining
stones, when no move is possible.

A configuration Φ of a graph G = (V, E) is a mapping Φ : V → { t, d} and
we say that (G, Φ) is k-reducible if there exists a succession of moves that leaves at
most k stones on the graph.

In 2008, Dorbec et al. [1] introduced a more restrictive question about Solitaire
Clobber. A graph G is said to be strongly 1-reducible if: for any vertex v of G, for
any configuration of G (provided G\v is non-monochromatic), for any color c (black
or white) there exists a way to play that yields a single stone of color c on v. The
strongly 1-reducible graph class is included in the class of graphs for which there
exists a Hamiltonian path with ending point on v, for all v ∈ V .

These authors considered this problem with respect to the cartesian product of
graphs where at least one of these graphs is a clique. The results are: all cliques
of size n ≥ 3 are strongly 1-reducible; if the graph is a multiple cartesian product
of cliques (Hamming graph) then it is strongly 1-reducible, except hypercubes and
cartesian product of K2 with K3; and if G is a strongly 1-reducible graph containing
at least 4 vertices, then the cartesian product of G with any clique is strongly 1-
reducible [1].

In this paper we show a generalization of the result of Dorbec at al. [1] by proving
that if we have two strongly 1-reducible connected graphs G and H (both graphs
with at least three vertices) then G�H is strongly 1-reducible.

References

[1] Dorbec, P., Duchêne, E. and Gravier, S., Solitaire Clobber played on Hamming graphs, Integers,
Journal of Combinatorial Number Theory, 8(1), G03, pp. 1–21, 2008.

∗Partially supported by CNPq and FAPERJ.
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Arboreal jump number of an order∗

Adriana Pimenta1 Michael Habib2 Sulamita Klein3,4

Jayme Szwarcfiter3,4,5

1 DME - Universidade Federal do Estado do Rio de Janeiro
2 LIAFA, Université Paris Diderot - Paris 7

3 PESC/COPPE - Universidade Federal do Rio de Janeiro
4 IM - Universidade Federal do Rio de Janeiro

5 NCE - Universidade Federal do Rio de Janeiro

Let P = (X,P ) and A = (X,A) be finite orders, we call A an extension of P if
P ⊂ A. If the Hasse diagram of A is a rooted tree, then A is an arboreal extension
of P . We say A has an arboreal jump at i if xi and xj are not comparable in P and
xi has a cover relation with xj. The arboreal jump number of P is the least arboreal
jump number among its arboreal extensions.

The jump number problem of a linear extension is very important in order theory
and work scheduling. An early paper on the subject is that by Habib and Cogis
[1]. Pulleyblank had shown that this problem is NP -complete for general orders
[2]. Moreover, Mitas proved that it remains NP -complete for interval orders [3].
We define the arboreal jump number problem for partially ordered sets, which is a
generalization of the jump number problem. The arboreal jump number problem
has an order P as instance and the question is to determine the minimum number
of arboreal jumps necessary to find an arboreal extension of P .

In this paper, we consider the arboreal jump number problem. Thus, we define
the arboreal jump number, minimum and minimal arboreal extensions of an order
P = (X,P ), and describe several results for this problem, including NP−completeness
for general orders. We describe an upper bound for the arboreal jump number for
an order P in terms of the ground set X and the edges set of its Hasse diagram.
We solve the problem for some classes, N -free orders, parallel orders and bipartite
orders. We show that the maximal elements of a N -free order P are preserved in its
minimum arboreal extensions. Finally, we also show that the arboreal jump number
is not a comparability invariant.

References
[1] Cogis, O., Habib, M.: Nombre de sauts et graphes serie-parallels, RAIRO Inform. Theo. 13, 315 3-18 (1979)
[2] Pulleyblank, W. R.: On minimizing setups in precedence constraints scheduling, Report 81 105-OR, Uni-

versity of Bonn, (1975)
[3] Mitas, J.: Tackling the jump number of interval orders, Order 8, 115-132 (1992)

∗This work has been partially supported by CAPES, CNPq and FAPERJ.
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EPT graphs on bounded degree trees

Liliana Alcón 2 Marisa Gutierrez 1,2

Maŕıa Ṕıa Mazzoleni 1,2

1 Conicet
2 Dto. de Matemática, FCE-UNLP.

An (h, s, t)-representation of a graph G consists of a collection of subtrees of a
tree T , where each subtree corresponds to a vertex in G, such that (i) the maximum
degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii)
there is an edge between two vertices in the graph G if and only if the corresponding
subtrees have at least t vertex in common in T . The class of graphs that have an
(h, s, t)-representation is denoted by [h, s, t]. It is known that [∞, 2, 2] = EPT ,
[3, 2, 2] = EPT ∩ chordal and [4, 2, 2] = EPT ∩ weakly chordal.

It was an open question1 to know the relationship between the maximum degree
h of the host tree and the length n of the longest chordless cycle (n ≥ 4). It is known
that if G ∈ [h, 2, 2], then G has no chordless cycle Cn for n ≥ h + 1, since there is
a unique EPT representation of Cn as a pie with n slices. The converse is true for
h = 3, since G must be chordal. The converse is false for h = 4, since the graph C̄6

has no chordless cycle greater than 4 and C̄6 /∈ [4, 2, 2]. It was an open question to
know if the converse is true for h ≥ 5. We prove that the converse is false for h ≥ 5.
That is, we find a family Fi,j,k, with i, j, k ≥ 1, such that if i + j + k + 2 = h, then
Fi,j,k ∈ [h, 2, 2]− [h− 1, 2, 2] and Fi,j,k is {Cn, n ≥ h}-free.

i= 1

k= 3

j= 2

F1,2,3

Figure 1: F1,2,3 ∈ [8, 2, 2]− [7, 2, 2] and F1,2,3 is {Cn, n ≥ 8}-free.

1Equivalences and the complete hierarchy of intersection graphs of paths in a tree, Discrete
Applied Mathematics. 156 (2008) 3203-3215.
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On basic chordal graphs and some of
its subclasses

Pablo De Caria Marisa Gutierrez

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

Chordal graphs are defined as those graphs without induced cycles of length
greater than or equal to four. Chordal graphs can also be characterized through
clique trees. A clique tree of a graph G is a tree T such that its vertices are the
cliques of G, and for every vertex v of G, the family Cv of cliques of G containing v
induces a subtree of T . A graph is chordal if and only if it has a clique tree.

The image of the class of chordal graphs via the clique operator is another well
known class, i.e., dually chordal graphs. This class can also be characterized in terms
of trees. A compatible tree of a graph G is a spanning tree T such that every clique of
G induces a subtree of T . A graph is dually chordal if and only if it has a compatible
tree.

The clique operator not only relates chordal and dually chordal graphs, but also
relates their characteristic trees. More precisely, every clique tree of a chordal graph
is a compatible tree of its clique graph. However, it is not necessarily true that a
compatible tree of the clique graph is a clique tree of the original graph.

A graph G is said to be basic chordal if it is chordal and its clique trees are
exactly the compatible trees of K(G). Two of the major results known about basic
chordal graphs are a characterization of them that gives a method to efficiently
decide whether a graph is basic chordal by looking at its minimal vertex separators,
and the fact that the image through the clique operator of the class of basic chordal
graphs is the class of dually chordal graphs [1].

Chordal graphs have subclasses such as DV and RDV graphs, that are char-
acterized by the existence of special types of clique trees, namely, DV -clique trees
and RDV -clique trees. The images of these classes through the clique operator, i.e.,
dually DV and dually RDV graphs, are in turn characterized by the existence of
special types of compatible trees, namely, DV -compatible trees and RDV -compatible
trees. In this context, basic DV and basic RDV graphs can be defined similarly to
basic chordal graphs.

In this work, basic DV and basic RDV graphs are introduced and characterized,
and their clique graphs are studied.

References

[1] Pablo De Caria, A joint study of chordal and dually chordal graphs, Ph.D.
Thesis, Universidad Nacional de La Plata, 2012.

Book of Abstracts LAWCG 2012

6



Interval count of generalizations of
threshold graphs

Márcia Cerioli 1 Fabiano Oliveira2 Jayme Szwarcfiter1

1 Universidade Federal do Rio de Janeiro
2 Universidade Estadual do Rio de Janeiro

A graph G is an interval graph if there is a correspondence between V (G) and
a family of intervals R = {Iv | v ∈ V (G)} of the real line such that, for all distinct
u, w ∈ V (G), Iu ∩ Iw 6= ∅ ⇐⇒ uw ∈ E(G). Such a family R is called an
interval model of G. The class of interval graphs is well-known and its interest comes
both from pure theoretical research and from its central role in several practical
applications [3]. An order (X, ≺) is an irreflexive and transitive binary relation ≺
on a set X. Interval orders are those orders defined by the transitive orientations
of the complement of interval graphs, letting X be the vertex set and x ≺ y when
vertex x is oriented towards vertex y.

The interval count problem is that of determining the smallest number of inter-
val lengths required in an interval model of a given interval graph or interval order.
Although there is intensive research on interval graphs, few results on the interval
count problem are known. For instance, it is well-known that graphs with interval
count one (unit interval graphs) can be recognized in linear-time using several dif-
ferent approaches, first of them dated from the sixties, whereas the complexity for
the recognition of graphs with interval count two is still open. Moreover, the actual
computation of the interval count has been determined only for certain classes, as
trees, almost-K1,3-free graphs (those free of induced K1,3 except for the removal of
one vertex), and generalizations of threshold graphs [2, 1].

In this work, we discuss why the class of split graphs consists of a natural can-
didate to have its interval count investigated and show that a particular subclass
of it, another generalization of threshold graphs, has interval count also limited to
two. We note that threshold dimension is two for graphs in this subclass and that
there are interval graphs that are not split with threshold dimension two.

References
[1] M. Cerioli, F. Oliveira, and J. Szwarcfiter. On counting interval lengths of

interval graphs. Discrete Applied Mathematics, 159(7):532–543, 2011.

[2] R. Leibowitz. Interval Counts and Threshold Numbers of Graphs. PhD thesis,
Rutgers University, Estados Unidos, 1978.

[3] I. Pe’er and R. Shamir. Realizing interval graphs with size and distance con-
straints. SIAM Journal on Discrete Mathematics, 10(4):662–687, 1997.
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Modelos DV que pueden enraizarse

M. Gutierrez 1,2 S. Tondato2

1 Conicet
2 Dto. de Matemática, FCE-UNLP.

Un resultado clásico [1] establece que un grafo es cordal si y sólo si posee un
árbol cuyos vértices son los cliques del grafo y tal que cada vértice del grafo induce
un subárbol en el árbol. A los árboles antes mencionados les diremos modelos.

Dos subclases de grafos cordales son la clase de grafos de intervalos y la clase
de grafos DV [2]. Un grafo es de intervalos si y sólo existe un modelo camino. Un
grafo es DV si y sólo si existe un modelo DV es decir un árbol dirigido tal que la
familia de subárboles inducidos por los vértices del grafo son caminos dirigidos.

Una clase de grafos intermedia entre las clases de grafos de intervalos y grafos
DV es la clase de grafos RDV [2]. Un grafo es RDV si y sólo si existe un modelo
DV que puede ser enraizado.

Es claro que todo modelo de intervalos puede ser enraizado en cualquiera de sus
dos hojas o bajo ciertas condiciones en un vértice interno. Por otro lado, es fácil
verificar que un modelo DV con 3 hojas puede ser enraizado. Es natural preguntarse
cuando un modelo DV de un grafo con más de dos hojas puede ser enraizado o en
caso de no ser enraizable si a partir de ese modelo es posible construir otro con al
menos tres hojas que pueda enraizarse.

En este trabajo se presentan condiciones suficientes para grafos DV con leafage
al lo sumo cuatro admitan modelos RDV con 3 o más hojas.

References

[1] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs,
Journal of Combinatorial Theory Series B 16 (1974), 47–56.

[2] C. Monma and V. Wei, Intersection graphs of paths in a tree, J. Combin. Theory B
41 (1986) 141–181.
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Self-diclique digraphs

Ana P. Figueroa 1 Marietjie Frick 2 Bernardo Llano3

Rita Zuazua 4

1 Instituto Tecnológico Autónomo de México, Mexico City
2 University of South Africa, Pretoria

3 Universidad Autónoma Metropolitana, Mexico City
4 Universidad Nacional Autónoma de México, Mexico City

Let D = (V,A) be a digraph. Consider X and Y (not necessarily disjoint)
nonempty subsets of vertices of D. We define a disimplex K(X, Y ) of D to be the
subdigraph whose vertex set is V (K(X, Y )) = X ∪ Y and which an arc goes from
every vertex of X to every vertex of Y (when X ∩ Y 6= ∅, loops are not considered).
A disimplex K(X, Y ) is called a diclique of D if K(X, Y ) is not a proper subdigraph

of any other disimplex of D . The diclique digraph (or diclique operator)
−→
k (D)

of a digraph D is the digraph whose vertex set is the set of all dicliques of D
and (K(X, Y ), K(X ′, Y ′)) is an arc of

−→
k (D) if and only if Y ∩ X ′ 6= ∅. We say

that a digraph D is self-diclique if
−→
k (D) is isomorphic to D. These definitions were

introduced by Erich Prisner in his book ”Graph Dynamics” (Pitman Research Notes
in Mathematics Series, 338. Longman, Harlow, UK, 1995), where the following open
problem (number 39 on page 207) is posed:

Problem. Are there, besides the directed cycles, more
−→
k -periodic digraphs in

the family of all finite strongly connected digraphs?

In this talk, we

(i) exhibit an infinite family of self-diclique circulant digraphs for which one of
its members is an Eulerian orientation of the graph of the regular octahedron.
This family is a natural generalization of the example given by B. Zelinka (On
a problem of E. Prisner concerning the biclique operator. Math. Bohem. 127
(2002), no. 3, 371–373),

(ii) briefly sketch a proof that this family is the only self-diclique in the set of all
circulant digraphs and

(iii) show an infinite family of self-diclique non-circulant digraphs.

We conclude with some open problems on dicliques.

Book of Abstracts LAWCG 2012
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On Clique Graphs of Chordal
Comparability Graphs

Michel Habib1 Denis Julien1 Ross M. McConnell2

Vińıcius Fernandes dos Santos3,∗ Jayme L. Szwarcfiter3,4,†

1 LIAFA, CNRS and Université Paris Diderot, France
2 Computer Science Department, Colorado State University, USA

3 COPPE, Universidade Federal do Rio de Janeiro, Brasil
4 IM and NCE, Universidade Federal do Rio de Janeiro, Brasil

The clique graph K(G) of a graph G is the intersection of the maximal cliques of
G. A well known characterization of clique graphs is that by Roberts and Spencer
(1971). In addition there are characterizations for clique graphs of several graph
classes. In this work, we add a new class to this list, by describing the clique
graphs of chordal comparability graphs. It is based on a new characterization of
chordal comparability graphs, in terms of their maximal cliques. We recall that
clique graphs of chordal graphs have been already characterized, e.g. [1], [2], [3].
As for comparability graphs, only partial characterizations of subclasses, such as
cographs [4], are known. The problem of characterizing the clique graphs of general
comparability graphs remains open.

References

[1] C. Bornstein and J. L. Szwarcfiter, Clique graphs of chordal and path graphs,
SIAM J. on Discrete Mathematics 7 (1994), 331-336.

[2] A. Brandstadt, V. D. Chepoi, F. F. Dragan and V. I. Voloshin, Dually chordal
graphs, SIAM J. on Discrete Mathematics 11 (1998), 436-455

[3] M. Gutierrez, Tree-clique graphs, in J. L. Szwarcfiter, ed., Workshop Interna-
cional de Combinatória, 7-26, Universdade Federal do Rio de Janeiro, Rio de
Janeiro, 1996

[4] F. Larrión, C. P. Mello, A. Morgana, V. Neumann-Lara and M. Pizaña, The
clique operator on cographs and serial graphs. Discrete Mathematics 282 (2004),
183-191

∗Supported by FAPERJ
†Partially Suppoted by CNPq, CAPES and FAPERJ
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The Clique Operator Considered as a
Functor

F. Larrión1 M.A. Pizaña2 R. Villarroel-Flores3

1 IMATE - Universidad Nacional Autónoma de México
2 Universidad Autónoma Metropolitana

3 Universiad Autónoma del Estado de Hidalgo

A clique of a graph is a maximal complete subgraph of the graph. The clique
operator K transforms a graph G into the intersection graph of its cliques K(G).

The clique operator K is not a functor in the category of graphs. It certainly
maps the category of graphs into itself (if A is a graph, K(A) is also a graph). It
surely maps identity morphisms of graphs (1A : A → A) into identity morphisms
of graphs (K(1A) = 1K(A) : K(A) → K(A)). But in general, given a morphism
of graphs α : A → B there is no uniquely defined, induced morphism K(α) such
that K(α) : K(A) → K(B). This particular problem can be solved by enlarging
the class of morphisms in the category: Allowing graph relations (multivalued ho-
momorphisms of graphs) as morphisms in the enlarged category we can define a
canonical morphism K(α) : K(A) → K(B). However, even then, the composition
rule for morphisms does not hold: Given α : A → B and β : B → C it does not
hold in general that K(β ◦ α) = K(β) ◦K(α).

Something else must be done. As it turns out we can define a combinatorial
homotopy f ' g among morphisms f and g of graphs namely: given f : A → B
and g : A→ B we say that f and g are homotopic whenever there is a path graph
Pn on n vertices (for some n) and there is a morphism of graphs H : Pn � A → B
such that H(1, a) = f(a) and H(n, a) = g(a) for all a ∈ A.

This combinatorial homotopy is analogous to the notion of homotopy among con-
tinuous functions of topological spaces. This new notion of combinatorial homotopy
on the one hand retains many of the properties of the topological homotopy and
on the other hand, it is amenable from the combinatorial point of view. With this
combinatorial homotopy, we can define the combinatorial homotopy equivalence of
graphs and we can also take the quotient category of graphs by declaring two mor-
phisms equal whenever they are homotopic. In this quotient category, the clique
operator is finally a functor. Once K becomes a functor, we have all of the category
theory at our disposal for studying clique-related problems.

This combinatorial homotopy can indeed be defined in a variety of natural ways
all of them leading to the same underlying notion: it is, for example, the coarser
equivalence relation that makes a graph and its pared graph (the one obtained by
removing dominated vertices) isomorphic. In this talk we shall see several of these
equivalent ways for defining our combinatorial homotopy and explore some of the
consequences and challenges.
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Clique graphs and topology

Paco Larrión1 Miguel Pizaña2 Rafael Villarroel-Flores3

1 UNAM, Mexico
2 UAM, Mexico

3 UAEH, Mexico

Given a simple graph G, we associate to it a topological space |G| as the geomet-
ric realization of a simplicial complex ∆(G), which has as simplices the complete
subgraphs of G. We say then that two graphs G1, G2 are homotopic, and write
G1 ' G2 whenever |G1| ' |G2|.

On the other hand, the clique graph K(G) of G is the intersection graph of
its maximal complete subgraphs. Finding conditions on G such that G ' K(G)
was a problem considered by E. Prisner in the 90’s, and he gave two big classes of
graphs with that property: dismantlable and clique-Helly. In this talk we survey
the research about this problem, together with some results obtained by the author
in joint work with F. Larrión and M. Pizaña.
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A lower bound for the
biclique-chromatic number∗

Hélio B. Macêdo Filho1,† Raphael C. S. Machado2,‡

Celina M. H. de Figueiredo1†

1 COPPE, Universidade Federal do Rio de Janeiro, Brazil
2 Inmetro — Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil

A biclique of a simple graph G is a maximal set of vertices that induces a com-
plete bipartite subgraph of G with at least one edge. A biclique-colouring of G is a
mapping that associates a colour to each vertex such that no biclique is monochro-
matic. If the mapping uses at most k colours we say that π is a k-biclique-colouring.
The biclique-chromatic number of G is the least k for which G has a k-biclique-
colouring. Biclique-colouring has a “hypergraph colouring version”. A colouring
of a hypergraph is a mapping that associates a colour to each vertex such that no
hyperedge is monochromatic. Let G = (V,E) be a graph and let HB(G) = (V, EB)
be the hypergraph whose hyperedges are EB = {K ⊆ V | K is a biclique of G} —
HB(G) is called the biclique-hypergraph of G. A biclique-colouring of G is a colouring
of its biclique-hypergraph HB(G).

Biclique-colouring is a difficult problem, being coNP-complete [1] even to check if
a colouring of a graph is a biclique-colouring. In the present work, we define a graph
invariant that is a lower bound for the biclique-chromatic number of a graph. A
blique is defined as a set of vertices that induces a complete graph and whose closed
neighborhood also induces a complete graph. The blique number of a graph is the
size of its maximum blique. We prove the following several properties of bliques.

Lemma 1 Let L be a blique of a graph G. Any pair of vertices of L is a biclique of G.

Proposition 2 The biclique-chromatic number of a graph is at least its blique number.

Lemma 3 The set of maximal bliques of a graph is a partition of its vertex set.

Theorem 4 The blique number of a graph can be determined in polynomial time.

References

[1] H. B. Macêdo Filho, S. Dantas, R. C. S. Machado, and C. M. H. de Figueiredo.
Biclique-colouring powers of paths and powers of cycles. In Proc. 11th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization, CTW 2012, pp. 134–
138. arXiv:1203.2543v1
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Book of Abstracts LAWCG 2012

13



The star and biclique coloring and
choosability problems

Marina Groshaus1,2,3,∗ Francisco J. Soulignac1,2,†

Pablo Terlisky2

1 CONICET
2 Departamento de Computación, FCEyN, UBA

3 Ciclo Básico Común, UBA

In this work we study the computational complexity of the star and biclique
coloring and choosability problems, which are analogous to the clique coloring and
choosability problems.

A biclique of a graph G is an induced complete bipartite graph with at least two
vertices. A star of G is a biclique with a universal vertex. A star (resp. biclique)
k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars
(resp. bicliques). Similarly, for a list assignment L:V (G) → P(N) of G, a star
(biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is
monochromatic. If G admits a star (biclique) L-coloring for every list assignment L
such that |L(v)| = k (v ∈ V (G)), then G is said to be star (biclique) k-choosable.

We prove that the star k-coloring and k-choosability problems are Σp
2-complete

and Πp
3-complete for k > 2, respectively, even when their inputs are restricted to

graphs with no induced C4 or Kk+2. Every biclique of a C4-free graph is a star, thus,
as a corollary, we obtain that the biclique k-coloring and k-choosability problems
on {C4, Kk+2}-free graphs are also Σp

2-complete and Πp
3-complete, respectively. Fol-

lowing, we study all these problems considering the inputs are restricted to some re-
lated classes, including: K3-free graphs; P3-free graphs; P3-free graphs; co-bipartite
graphs; graphs with no induced 4-wheels, gems, or darts; split graphs; threshold
graphs; and block graphs.

∗Partially supported by UBACyT grants 20020100300042 and 20020100100754, PICT AN-
PCyT grants 2010-1629 and 2010-1970, and CONICET PIP grant 11220100100310.

†Partially supported by UBACyT grant 20020100300048.
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The biclique graph of some classes of
graphs

Marina Groshaus1,2,3,∗ Juan Pablo Puppo1,4,†

1 CONICET
2 Universidad de Buenos Aires, Ciclo Básico Común

3 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Computación

4 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Instituto de Cálculo

In this work we study the biclique operator KB that maps each graph to its
biclique graph. A biclique of a graph is a set of vertices inducing a maximal complete
bipartite subgraph. For a graph G, the biclique graph KB(G) of G is the intersection
graph of the bicliques of G. That is, KB(G) has a vertex for each biclique of G and
two vertices of KB(G) are adjacent whenever their corresponding bicliques intersect.

The biclique graph can also be thought as an operator between graphs. For a
graph class C, KB(C) is the family of all the biclique graphs of the graphs of C.
Conversely, for a class of graphs C, the family KB−1(C) is formed by those graphs
G such that KB(G) ∈ C.

In this work we study the biclique operator for different classes of graphs. The
goal is, on one hand, to characterize KB(C) and KB−1(C) and, on the other hand,
to determine the computational complexity of the problem of deciding if a given
graph belongs to KB−1(C) for some class C.

In particular, we study subclasses of chordal graph. We prove that if G is a
bipartite chordal graph, then KB(G) is either chordal or their induced cycles with
minimum length belong to a wheel. Also we analyze those graphs that belong to
KB−1(C) for the class C of chordal graphs. Finally, we prove that it is coNP-complete
to determine if G ∈ KB−1(K), where K is the class of complete graphs.

∗Partially supported by UBACyT grant 20020100300042 and 20020100100754, PICT ANPCyT
grant 2010-1629 and 2010-1970, CONICET PIP grant 11220100100310.

†Partially supported by UBACyT grant 20020100100754, PICT ANPCyT grant 2010-1970,
CONICET PIP grant 11220100100310.
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Integer Index of n-broom-like graphs.

Laura Patuzzi 1 Maria A.A. de Freitas 1 ,∗

Renata R. Del-Vecchio 2 ,†

1 Universidade Federal do Rio de Janeiro, Brasil
2 Universidade Federal Fluminense, Brasil

A broom B(a; r) is a graph with a + r vertices obtained attaching a vertices to the
vertex v1 of the path Pr = v1 . . . vr, where a ≥ 1 and r ≥ 1. We will consider vr as
the root of B(a; r). A p-broom is a graph obtained identifying the roots of p brooms
in a single vertex.

A generalization of these graphs is obtained by identifying each vertex of a clique
of size n ≥ 3 with the root of a broom B(ai; ri), and it is called a n-broom-like. If
ai = a and ri = r, for all 1 ≤ i ≤ n, the n-broom-like is the hierarchical product of
Kn by B(a; r), denoted by Kn ⊓B(a; r). Moreover, if r = 1, the hierarchical product
Kn ⊓ B(a; r) coincides with the corona graph Kn ◦ Ka. In this case, n is the clique
number and na is the coclique number.

We calculate the spectrum of Kn ◦ Ka and characterize when it is an integral
graph and when it is a non-integral graph with integer index. For any odd n we
exhibit a Kn◦Ka integral graph. This does not occur in the case where n is even, for
example, all graphs in the family {K4 ◦ Ka; a ≥ 1} are non-integral. We succeeded,
however, to build an infinite family of integral corona graphs, Kn ◦ Ka, with n and
a both even.

Furthermore, fixing the clique number n ≥ 3 and a constant c ≥ 2, we obtain
a total order of the graphs Kn ⊓ B(a; r), such that a + r = c, according to their
indices.

∗Supported by CNPq grant.
†Supported by CNPq and FAPERJ grant.
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Dominating Induced Matchings

Min Chih Lin1,∗ Michel Mizrahi1,∗ Jayme Szwarcfiter2,†

1 CONICET and Universidad de Buenos Aires, Facultad de Ciencias Exactas y
Naturales, Instituto de Cálculo and Departamento de Computación

2 Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and
COPPE

Let G be a simple weighted undirected graph, i.e, a graph without loops and mul-
tiple edges with vertex set V , edge set E and a weight function w : E(G)→ R. Given
an edge e ∈ E, we say that e dominates itself and every edge sharing a vertex with e.
An induced matching in G is a subset of edges such that each edge of G is dominated
by at most one edge of the subset. The problem of determining whether a graph
has a dominating induced matching, i.e., an induced matching that dominates every
edge of the graph is also known in the literature as dominating induced matching
(DIM for short) or efficient edge domination. This problem is NP-Complete. In
this work we study the weighted version of DIM, this is, find a DIM M such that the
sum of weights of its edges is minimum between all DIM’s if any and we proposed an
exact algorithm to determine a minimum DIM with time complexity O(1.485nm).

∗Partially supported by UBACyT Grants 20020100100754 and 20020090100149, PICT AN-
PCyT Grant 2010-1970 and PIP CONICET Grant 11220100100310.

†Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico,
CNPq, and Fundação de Amparo Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil.
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Efficient Multiple Domination

Rommel Teodoro de Oliveira Rommel Melgaço Barbosa

Universidade Federal de Goias - UFG, Brasil

Given a graph G = (V,E) and a set of vertices D ⊆ V , a vertice v ∈ V is
dominated by D if |N [v] ∩ D| ≥ 1. When |N(v) ∩ D| = 1 for all v ∈ V , G is
efficiently dominable. A generalization of this concept is called efficient multiple
domination, which requires all vertices must be dominated by a set D ⊆ V exactly
k times. Some results on the efficient multiple domination are presented, including
bounds for the size of efficient k-dominating sets, the complement and iterated line
graphs of efficiently (r + 1)-dominable r-regular graphs and a NP-completeness
proof for the efficient multiple domination problem in arbitrary graphs.
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Interval Digraphs

Pavol Hell

Simon Fraser University, Canada

The study of interval graphs is one of the most beautiful and popular parts
of graph theory, with interesting applications, elegant characterization theorems,
and ingenious recognition and optimization algorithms. Much of this still applies to
variants such as proper or unit interval graphs. However, when it comes to digraphs,
much of the appeal seems lost, with no forbidden structure characterizations, and
no really efficient recognition algorithms. I will discuss new variants of interval
digraphs and proper interval digraphs, which retain some of the elegance of interval
graphs. In particular, I will describe a forbidden structure characterization of a class
of interval digraphs, which also applies to classical interval graphs and provides a
link between the theorems of Lekkerkerker-Boland and Fulkerson-Gross. I will also
describe several open problems. These results are joint with Arash Rafiey, and some
also with Tomas Feder and Jing Huang.
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Well-covered complementary prisms
graphs

Rommel M. Barbosa Márcia R. C. Santana

Instituto de Informática - UFG

Let G = (V, E) be a simple graph and G be the complement of G. The com-
plementary prism of G denoted by GG is the graph formed from the disjoint union
of G and G by adding the edges of a perfect matching between the corresponding
vertices of G and G. This class was introduced by Haynes et al. [4]. In [5] Plummer
defines a graph to be well-covered if all its maximal independent sets have the same
size. The girth of a graph G is the length of a shortest cycle of G. If G does not
contain any cycles, its girth is defined to be infinite.

The complementary prisms is a class whose many parameters have not been
investigated yet. Some studied parameters are vertex independence, distance and
domination [1, 2, 3, 4]. We show that the well-covered complementary prisms,
with the exception of G ∈ {K1, K2}, have girth < 5 and we presented sufficient
condictions to construct well-covered complementary prism graphs. We prove other
properties related to maximal independent sets in complementary prisms.

References

[1] T.W. Haynes, M.A. Henning and L.C. Merwe, Domination and Total Domina-
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Enumeración de conjuntos
independientes maximales en grafos

bisplit

César Stuardo1

castuardo@innovativa.cl
Mónica Villanueva1

monica.villanueva@usach.cl

1 Ingenieŕıa Informática
Universidad de Santiago de Chile

Santiago, Chile

Un grafo bisplit es un grafo no dirigido G(V,E) cuyo conjunto de vértices (V )
puede ser particionado en tres conjuntos, X, Y y Z, de manera tal que X, Y y
Z son conjuntos independientes e Y ∪ Z induce un grafo bipartito completo. En
este trabajo se utilizan las caracteŕısticas propias de la clase de grafos bisplit para
diseñar un algoritmo que permita resolver el problema de enumeración de conjuntos
independientes maximales en un grafo bisplit en tiempo polinomial en función de la
cantidad de conjuntos independientes maximales, problema conocido por pertenecer
a la clase #P-Completo1 para un grafo cualquiera.

Palabras clave: Grafo bisplit, Enumeración de conjuntos independientes maximales.

1Leslie G. Valiant (1979), The Complexity of Computing the Permanent, (Elsevier) 8(2):189-201
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On the k, i-coloring problem

Flavia Bonomo 1,∗ Guillermo Durán1,† Ivo Koch1,∗

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

A coloring of a graph G is an assignment of colors (represented by natural num-
bers) to the vertices of G such that any two adjacent vertices are assigned different
colors. The smallest number t such that G admits a coloring with t colors is called
the chromatic number of G, and is denoted by χ(G). In a k, i-coloring of a graph we
assign to each vertex a set of colors of size k instead of a single color, in such a way
that the sets of two adjacent vertices intersect in i colors or less. The k, i-chromatic
number of a graph G, noted χi

k(G), is the minimum number of colors needed for a
k, i-coloring of G. This coloring was introduced by Mndez-Diaz and Zabala in 1999.
This new coloring parameter generalizes the work of Hilton, Rado and Scott, who
introduced the problem for i = 0 on planar graphs. In their seminal paper, Mndez-
Diaz and Zabala studied upper bounds for χi

k(G) and extensions of properties of the
classic coloring problem; further, they proposed a linear programming approach for
the problem.
In this work, we relate the k, i-coloring of cliques to a still unsolved problem of
coding theory (making a polynomial solution unlikely), give new upper and lower
bounds for χi

k(G), and give a solution for cycles and cactus graphs for some values
of k and i. Finally, we prove that given a graph G with treewidth bounded by
a constant c and fixed k, i and j, it can be determined in linear time whether a
k, i-coloring with j colors does exist.

∗Authors were partially supported by ANPCyT PICT 2007-00518, UBACyT Grants
20020100100980 and 20020090300094, and CONICET PIP 112-200901-00178(Argentina)

†Partially supported by FONDECyT 1110797 and the Millennium Science Institute “Complex
Engineering Systems”(Chile)
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On L(h, k)-coloring b-core limited
graphs

Márcia R. Cerioli1,2,∗ Daniel F. D. Posner1,†

1 PESC/COPPE - Universidade Federal do Rio de Janeiro
2 Instituto de Matemática - Universidade Federal do Rio de Janeiro

An L(h, k)-coloring of a graph G = (V, E) is an assignment f of non-negative
integers to its vertices with the following restrictions: if uv ∈ E, then |f(u)−f(v)| ≥
h and; if dist(u, v) = 2, then |f(u) − f(v)| ≥ k. The greatest integer used in an
L(h, k)-coloring f of a graph is the span of f . The minimum span among all L(h, k)-
colorings of a graph G is denoted by λh,k(G). Griggs and Yeh (Labeling graphs with
a condition at distance 2, SIAM J. Disc. Math. 5, 1992, 586–595) introduced this
special type of vertex coloring and conjectured that every graph with ∆ ≥ 2 admits
an L(2, 1)-coloring with λ2,1 ≤ ∆2. Havet, Reed, and Sereni (L(2, 1)-labelling of
graphs, Proceedings of SODA’2008, 621–630) proved this conjecture is true for all
graphs with ∆ ≥ 1063.

A b-core is an induced subgraph of a graph where every vertex has degree at
least b. One can easily verify whether a graph has a b-core by recursively removing
vertices with degree less than b. A graph is b-core limited if it has no (b + 1)-core.
Mulet et al. (Coloring Random Graphs, Phys. Rev. Lett. 89, 2002, 268701-4) used
b-core limited graphs to solve the coloring problem for G(n, p) graphs.

We show that λh,k(G) ≤ ∆2(k − 1) + ∆(2kb + h− k − 1)− b2 + b(3− 2k) for a
b-core limited graph G. Furthermore, we give two families of b-core limited graphs
for which the Griggs and Yeh’s Conjecture is true. The first one is formed by b-core
limited graphs with b = (1− ǫ)∆, where 0 < ǫ ≤ 1 is a constant, and ∆ ≥ 1−ǫ

ǫ2
. The

second is the family of the b-core limited graphs with b ≤ ∆ −
√

∆. Whereas the
proof of Havet, Reed, and Sereni for the Griggs and Yeh’s Conjecture only holds
for graphs with extremely high values of ∆, for the families of graphs previously
described the conjecture holds for small values of ∆ (e.g., b-core limited graphs with
∆ ≥ 100 and b = 0.9∆, or with ∆ = 100 and b ≤ ∆−

√
∆ = 90).

∗Partially supported by CAPES, CNPq, and FAPERJ.
†CNPq Doctoral Scholarship.
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Total chromatic number of some
families of graphs with maximum

degree 3∗
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Myriam Preissmann3§ Diana Sasaki2¶

1 IME, Universidade Federal Fluminense, Brazil
2 COPPE, Universidade Federal do Rio de Janeiro, Brazil

3 Laboratoire G-SCOP/CNRS/INPG, France

A k-total-coloring of G is an assignment of k colors to the edges and vertices of
G, so that adjacent or incident elements have different colors. The total chromatic
number χT of G is the least k for which G has a k-total-coloring. Clearly, χT ≥ ∆+1
and the well-known Total Coloring Conjecture states that χT ≤ ∆ + 2. The focus
of this work are graphs with maximum degree 3.

Snarks are cyclically-4-edge-connected cubic graphs of chromatic index 4 which
had their origin in the search of counterexamples to the Four Color Theorem. In
this work, we define an infinite family of snarks with squares and show that all its
members have total chromatic number 4. The construction of this family uses the
following definition. Bricks are connected bridgeless graphs which have 4 vertices of
degree 2 and all others of degree 3, that are subgraphs of cyclically-4-edge-connected
cubic graphs. Let G1 and G2 be two bricks. A junction of G1 and G2 is any cubic
graph obtained by adding a matching between the four vertices of degree 2 of G1

and the four vertices of degree 2 of G2. A snark can be obtained by a junction of
two bricks when at least one brick has chromatic index 4. The dot product [1] of
two snarks gives a way to obtain a brick with chromatic index 4, by deleting one
special pair of edges of this product.

Moreover, we determine the total chromatic number of some families of graphs
with maximum degree 3: Hexagonal-grid, Wall(5), Wall(6), Near-prism(1), and
Near-prism(2) families. We point out that some of the members of the last two
families have total chromatic number 5.

References

[1] R. Isaacs. “Infinite families of nontrivial graphs which are not Tait colorable”. The American
Mathematical Monthly, 82, (1975) pp. 221–239.
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Minimal 3 × 3 M-obstruction cographs

Raquel S. F. Bravo1,∗ Loana T. Nogueira1,†

Fábio Protti 1,‡ Clautenis Viana1

1 Universidade Federal Fluminense - Instituto de Computação

Let M be a symmetric m × m matrix over 0, 1, ∗. An M -partition of a graph
G is a partition of the vertex set V (G) into m parts V1, V2, . . . , Vm such that: (i) Vi

is a clique (respectively independent set) if M(i, i) = 1 (respectively M(i, i) = 0);
(ii) there are all possible edges (respectively non-edges) between parts Vi and Vj,
i ̸= j, if M(i, j) = 1 (respectively M(i, j) = 0); (iii) there are no restrictions be-
tween parts Vi and Vj, i ̸= j, if M(i, j) = ∗. A graph G that does not admit an
M -partition is called an M -obstruction. A minimal M -obstruction is a graph G
which is an M -obstruction, but such that every proper induced subgraph of G ad-
mits an M -partition. In [1] it is has been shown that matrix partition problems for
cographs admit polynomial time algorithms and forbidden induced subgraph char-
acterizations. Also, the authors bound the size of a largest minimal M -obstruction
cograph.

This work provides explicit characterizations of M -partitionable cographs, in
terms of minimal obstructions, for all 3 × 3 matrices M .

References

[1] Generalized colourings (matrix partitions) of cographs. Feder, T. Hell, P., and
Hochstttler W. Graph Theory in Paris: Proceedings of a Conference in Memory
of Claude Berge - Page 149–168.
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Geodetic Number Versus Hull Number
in P3-Convexity

Carmen C. Centeno1 Lucia D. Penso2 Dieter Rautenbach2

Vinicius G. P. de Sá1

1 Instituto de Matemática, NCE, and COPPE, Universidade Federal do Rio de
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2 Institut für Optimierung und Operations Research, Universität Ulm, Ulm,
Germany, lucia.penso@uni-ulm.de, dieter.rautenbach@uni-ulm.de

In this talk we study the graphs G for which the hull number h(G) and the
geodetic number g(G) with respect to P3-convexity coincide. These two parameters
correspond to the minimum cardinality of a set U of vertices of G such that the
simple expansion process that iteratively adds to U , all vertices outside of U that
have two neighbors in U , produces the whole vertex set of G either eventually or
after one iteration, respectively. We establish numerous structural properties of
the graphs G with h(G) = g(G), which allow the constructive characterization as
well as the efficient recognition of all triangle-free such graphs. Furthermore, we
characterize the graphs G that satisfy h(H) = g(H) for every induced subgraph H
of G in terms of forbidden induced subgraphs. (Talk based on work accepted at WG
2012.)
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Elements of Geodetic Convexity
Applied to Classes of Graphs and Some
Results in Distance-Hereditary Graphs

M. C. Dourado1,∗ R. A. Oliveira1,† F. Protti2,‡

D. Rautenbach 3,§

1 Universidade Federal do Rio de Janeiro - Brazil.
2 Universidade Federal Fluminense - Brazil.

3 Universität Ulm - Germany.

A family C of subsets of a finite set X is called a convexity on X if: (a) ∅, X ∈ C;
(b) closed under intersections. The elements of C are called convex sets. Given
A ⊆ X, the convex hull of A is the smallest convex set of C containing A. The most
natural graph convexities are path convexities, each defined by a set P of paths
in G. The well-known minimum path convexity is also called geodetic convexity,
where elements of C are called geodesically convex sets (also g-convex sets). Let
G be a finite, simple, connected and undirected graph. Given vertices u and v
in V (G), the geodetic interval I[u, v] consists of all vertices of V (G) belonging to
some minimum path between u and v. For S ⊆ V (G), I[S] is the union of all
geodetic intervals I[u, v] with u, v ∈ S. Define Ik[S] as an operation on geodetic
intervals as follows: I1[S] = I[S] and Ik[S] = I[Ik−1[S]]. For S ⊆ V (G), the g-
convex hull of S, denoted by H(S), can be computed in the following way: H(S) =
Ik[S], where Ik[S] = Ik−1[S]. A subset S ⊆ V (G) is a Carathéodory set of G if
H(S)\ ∪x∈S H(S\{x}) ̸= ∅. The Carathéodory number of G is defined as c(G) =
max{|S| + 1 : S is a Carathéodory set of G}.

Our goal is to study the classes of graphs defined in the following way:

(i) Ik
p = {G : H(S) = Ik[S] for all S ⊆ V (G) with |S| ≤ p}.

(ii) H = {G : H(S) =
∪

u,v∈S

H({u, v}) for all S ⊆ V (G)}.

In this work we show that I1
n = I1

2 ∩ H and H = {G : c(G) ≤ 2}.
A graph G is called distance-hereditary if distances in any connected induced

subgraph of G are the same as they are in G. Let DH stand for the class of
distance-hereditary graphs. We prove that DH ⊆ H. We also give a forbidden
subgraph characterization of I1

2 restricted to distance-hereditary graphs. Finally,
we show graphs in (DH ∩ Ik

n) \ Ik−1
n for every integer k.

∗mitre@nce.ufrj.br
†r.oliveira@ppgi.ufrj.br
‡fabio@ic.uff.br
§dieter.rautenbach@uni-ulm.de
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The Radon number on graphs

Alexandre Toman

1

Mitre C. Dourado

1
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Given a graph G and a 
olle
tion C of subsets of V(G), the pair (G, C) is a graph


onvexity if ∅, V (G) ∈ C, and C is 
losed under interse
tion. The sets of C are 
alled


onvex sets. The 
onvex hull of S, with respe
t to some 
onvexity C, is the smallest

set H [S] in C 
ontaining S. Some di�erent graph 
onvexities have been 
onsidered

in the literature. The most 
ommom of then is the geodeti
 
onvexity, where 
onvex

sets, are 
losed under shortest paths.

We say that in a set S exists a Radon partition if we 
an write S = S1 ∪ S2,

with S1 ∩ S2 = ∅, but H [S1] ∩ H [S2] 6= ∅. In a graph 
onvexity (G,C), the Radon

number is the smallest number r su
h that every S ⊂ V (G) with |S| ≥ r than S
admits a Radon partition. A set R is 
alled an anti-Radon set if it admits no Radon

partition. It is known the Radon number for monophoni
 
onvexity [2℄ and triangle

path 
onvexity [1℄.

In this work, we will determine the Radon number for some graph 
lasses in the

geodeti
 
onvexity. In addition, we re
ognize anti-Radon sets of unit interval graphs

in the same 
onvexity. The re
ognition of anti-Radon sets for unit interval graphs

is based on strategies developed at [3℄. For the Radon number on P3-
onvexity (for

paths of lenght 2), we mention results of [4℄.
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Two Families of Cayley Graph
Interconnection Networks∗

André C. Ribeiro1,3 Celina M. H. Figueiredo1

Luis Antonio B. Kowada2

1 Universidade Federal do Rio de Janeiro
2 Universidade Federal Fluminense

3 Instituto Federal Goiano

In this work, our interests are in the design and analysis of static networks.
Static networks can be modeled using tools from Graph Theory. The graph is the
interconnection network, the processors are the vertices and the communication
links between processors are the edges connecting the vertices. There are several
parameters of interest to specify a network: low degree, low diameter, and the
distribution of the node disjoint paths between a pair of vertices in the graph. The
degree relates to the port capacity of the processors and hence to the hardware cost
of the network. The maximum communication delay between a pair of processors
in a network is measured by the diameter of the graph. Thus, the diameter is a
measure of the running cost.

Our goal is to propose two new families of Cayley graphs that can be used to
design interconnection networks. The definition of Cayley graphs was introduced
to explain the concept of abstract groups which are described by a generating set.
The Cayley graphs are regular, may have logarithmic diameter, are maximally fault
tolerant and have a rich variety of algebraic properties.

One such algebraic property is that Cayley graphs are vertex transitive, i.e., the
graph looks the same when viewed from any vertex. One important consequence of
the vertex transitivity is that a guest structure embedded in one region of the host
network can be readily translated to another region without affecting the quality of
the original embedding. Other algebraic properties are to be edge transitive or to
be both vertex and edge transitive which we call a symmetric graph.

The family Hl,p has been defined in the context of edge partitions, and subse-
quently shown to be composed by Hamiltonian Cayley graphs. We consider two
families of Cayley graphs: Hl,p, and H ′

l,p, a related family composed of sparser
graphs. The pl−1 vertices of the graph Hl,p are the l-tuples with values between 0
and p−1, such that the sum of the l values is congruent to 0 mod p, and there is an
edge between two vertices having two corresponding pairs of entries whose values
differ by one unit. In the sparser graph H ′

l,p one of such pairs is the last one. The
graph H ′

l,p has diameter D = (⌊p
2
⌋(l−1)) and we show an algorithm to calculate the

diameter of graph Hl,p of time O(l). The established properties support the graphs
Hl,p and H ′

l,p to be good schemes of interconnection networks.

∗This research was supported by CAPES, FAPERJ and CNPq.
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A Pre-Processing Procedure for The
Bicluster Graph Editing Problem

Rian Gabriel S. Pinheiro1,∗ Ivan César Martins1,†

Fábio Protti 1,‡ Luiz Satoru Ochi 1,§

1 Universidade Federal Fluminense

The Bicluster Graph Editing Problem (BGEP) is a NP-complete problem such
that, given a bipartite graph G = (V, U, E) and an integer k ≥ 0, asks whether
it is possible to add and/or remove at most k edges in order to make G a union
of complete bipartite subgraphs (bicliques). The concept of grouping data into
biclusters arises in many contexts and different disciplines. Mathematical models
based on the BGEP produce good solutions to problems in computational biology
and contributes to the design of multicast networks.

Our contribution is to conduct a pre-processing procedure to fix some variables
and generate new constraints to the problem. This is done based on the following
theorem. Let a and b be vertices in a bipartite graph G(V, U, E). If d(a, b) ≥ 4, then
there exists an optimal solution in which a and b belong to distinct bicliques.

Dijkstra’s algorithm is used to calculate the distance between each pair of verti-
ces. The pre-processing procedure can set decision variables or create cuts based on
the distances according to the theorem. If vertices u and v are in different partitions,
we can simply set the variable xuv = 1. In the case where u and v are in the same
partition U , the cuts xuw + xvw ≥ 1, ∀w ∈ V will be created.

∗Supported by a FAPERJ.
†Supported by CAPES.
‡Supported by CNPq, CAPES and FAPERJ.
§Supported by CNPq, CAPES and FAPERJ.
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Clique-based and others IP models for
graph coloring with constraints and

scheduling

Rosiane de Freitas1 Flávio Coelho 1 Clarice Santos
Simone Gama1

1 Programa de Pós-Graduação em Informática, Instituto de Computação
Universidade Federal do Amazonas

In this work, we discuss about graph colorings with constraints on vertices and
edges, NP-hard problems, so as to present integer linear programming formula-
tions based on clique partition and other graph properties. We present some graph
coloring problems that are generalizations of the classical vertex coloring, such as
multicoloring, list-coloring, channel-assignment coloring, and others, discussing their
correlations with scheduling theory and applications in wireless networks. The ap-
proach applying mathematical programming in the classical vertex coloring has re-
ceived special attention in recent years, with several known IP formulations, such
as formulations based on independent sets or cliques, partial orders, and using some
properties as acyclic orientations or asymmetric representatives. Some computa-
tional strategies are presented also, as pre-processing, relaxations, cut and column
generation, and approximate techniques.
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On the clique operator complexity ∗

Luerbio Faria

Universidade do Estado do Rio de Janeiro

The clique operator K in a graph G defines the graph K(G) = H such that H
is the vertex intersection graph of the cliques (maximal complete sets) of G. The
clique operator decision problem consists of an input with a graph H and the
question whether there is a graph G such that K(G) = H. A graph G is clique
Helly if the family of cliques of G satisfies the Helly property: for every pairwise
intersecting subfamily the total intersection is nonempty. The family of cliques of
a clique-complete graph has total intersection nonempty. Hamelink proved [2] that
being clique Helly is a sufficient condition to be clique graph. Later, Roberts and
Spencer gave [4] a necessary and sufficient condition for a graph G = (V,E) to be a
clique graph: the existence of a complete set cover for the edges set of G satisfying
the Helly property. We notice that the clique family of a graph can be exponential.
Szwarcfiter proved [5] that the recognition of clique Helly graphs is polynomial and
together with Mello and Lucchesi [3] that the clique-complete graph recognition is
NP-complete. The recognition of clique graphs has also been proved [1] to be NP-
complete. In this talk we will discuss some complexity aspects of the clique operator.
We will see some input constraints in which the problem remains NP-complete and
some input constraints in which the problem is polynomial. We will see a large range
where the clique operator complexity status is unknown. Some of these constraints
involve the problem restricted to some classical classes of graphs, as for example the
split graphs, in which the problem was recently established to be NP-complete. We
will see some parts of the proofs of these results we consider important since they
can enable us to establish NP-completeness for further classes. We will discuss our
ideas for deciding if the recognition problem restricted to planar graphs class is in
P or is NP-complete.

References

[1] L. Alcón, L. Faria, C. M. H. de Figueiredo, M. Gutierrez, The complexity of
clique graph recognition, Theoret. Comput. Sci., 410, (2009) 2072–2083.
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On the P3-Local Carathéodory number

Rommel M. Barbosa1 Erika M. M. Coelho1

Mitre C. Dourado2 Dieter Rautenbach 3

Jayme L. Szwarcfiter4

1 INF, Universidade Federal de Goiás, Brazil
2 IM and NCE, Universidade Federal do Rio de Janeiro, Brazil

3 Universität Ulm, Ulm, Germany
4 IM, NCE, and COPPE, Universidade Federal do Rio de Janeiro, Brazil

Let G be a finite, simple, and undirected graph and let S be a set of vertices
of G. If every common neighbor of a pair vertices of S also lies in S, then S is
P3-convex. The P3-convex hull HG(S) of S is the smallest P3-convex set containing
S. The P3-Carathéodory number of G is the smallest integer c such that for every set
S and every vertex u in HG(S), there is a set F ⊆ S with |F | ≤ c and u ∈ HG(F ).

Another invariant associated with the Carathéodory number is the local Cara-
théodory number. Let G be a graph and S ⊆ V (G). The P3-local Carathéodory
number is the smallest integer l such that for every u ∈ HG(S) there is a set F ⊆ S
with |F | ≤ l and u ∈ HG(F ).

In [1], it has been described a polynomial-time algorithm to determine the P3-
Carathéodory number of a tree. On the other hand, it has been proved that the
problem becomes NP-complete for bipartite graphs. In [2], it has been proved that
the decision problem corresponding to the local Carathéodory number is also NP-
complete, for general graphs.

In this work, we study structural and algorithmic aspects of the P3-local Cara-
théodory number for some subclasses and present a polynomial-time algorithm to
determine the P3-local Carathéodory number for trees.

References
[1] R. M. Barbosa, E. M. M. Coelho, M. C. Dourado, D. Rautenbach and J. L.

Szwarcfiter, On the Carathéodory number for the convexity of paths of order
three, to appear in SIAM J. Discrete Math., an extended abstract appeared in
the Proceedings of EuroComb ’11, Electronic Notes in Discrete Mathematics 38
(2011), 105-110.
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Uma Convexidade em Grafos
Direcionados Acíclicos

Carmen C. Centeno1 Mitre C. Dourado1

Jayme L. Szwarcfiter1

1 Instituto de Matématica, NCE, and COPPE, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, RJ, Brazil

A convexidade é definida considerando-se uma coleção S de subconjuntos de
V (G) então o par (G,S) é uma convexidade em grafo se: ∅ ∈ S, V (G) ∈ S, e S é
fechado sob intersecção. Os conjuntos em S são chamados de conjuntos convexos. Na
convexidade procuramos três parâmetros: número de convexidade, número convexo
e número de envoltória.

A convexidade em grafos direcionados foi estudada na década de 70 especifi-
camente em torneios [1, 2, 4]. Para torneios multipartidos temos um estudo da
convexidade de caminhos de comprimento dois [3]. Prosseguimos com o estudo
da convexidade em grafos direcionados definindo o que chamamos de convexidade
de precessão. Esta é definida sobre os predecessores diretos de um vértice. Se
(uv) ∈ E(G), dizemos que u é um predecessor direto de v. Para tal convexidade
determinamos intervalos para o número de convexidade e o número de envoltória
dos grafos direcionados acícilicos e ainda mostramos que o número convexo para tais
grafos é um problema NP-completo.

Ainda propomos o estudo da convexidade geodética a qual se relaciona com
o menor caminho entre dois vértices. Como Chartrand, et al. caracterizam os
grafos de ordem n e que possuem número de convexidade igual a n− 1 gostaríamos
de desenvolver um algoritmo de tempo polinomial para o número da envoltória
geodética para os grafos direcionados acíclicos.

Referências
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AVD-total-coloring of complete
equipartite graphs∗

At́ılio G. Luiz,† Christiane N. Campos,†
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Institute of Computing, UNICAMP, Campinas, SP, Brazil

Let G := (V,E) be a simple graph. A k-total-coloring of G is a mapping
φ : (V ∪ E)→ {1, 2, . . . , k} such that no adjacent vertices or adjacent edges re-
ceive the same color, and no incident elements receive the same color. Let C(u) =
{φ(u)} ∪ {φ(uv) : uv ∈ E(G)} be the set of colors that occurs in a vertex u,
u ∈ V (G). If for any pair of adjacent vertices u, v ∈ V (G), C(u) 6= C(v), then φ is
an adjacent-vertex-distinguishing-total-coloring (AVD-total-coloring). The adjacent-
vertex-distinguishing-total-chromatic number (AVD-total-chromatic number), χ′′

a(G),
is the smallest number of colors for which a graph G admits an AVD-total-coloring.

The AVD-total-coloring problem consists of determining χ′′
a(G) for a simple graph

G. This problem was first introduced by Zhang et al. around 2005. The authors
determined the AVD-total-chromatic number for some classic families of graphs, and
conjectured that for a simple graph G, χ′′

a(G) ≤ ∆(G) + 3.
In this work, we consider complete equipartite graphs. A complete equipartite

graph, Kr(n), is a graph whose vertex set can be partitioned into r independent sets
(parts) of cardinality n, such that any two vertices belonging to different parts are
joined by an edge. We prove the following result:

Theorem 1. Let G := Kr(n) be a complete equipartite graph with n ≥ 2 and r ≥ 2.
If G has even order, then χ′′

a(G) = ∆(G) + 2; otherwise, χ′′
a(G) ≤ ∆(G) + 3.

Initially, note that χ′′
a(G) ≥ ∆(G) + 2 since G has two adjacent vertices of

maximum degree. In order to prove this theorem, we build a (∆(G)+2)-AVD-total-
coloring for G of even order and a (∆(G)+3)-AVD-total-coloring for G of odd order.
These colorings are obtained by decomposing G into a set of disjoint complete graphs
and a set of bipartite graphs. In our proof, four cases are considered depending on
the parity of n and r. In each case, we assign suitable edge-colorings to the set of
bipartite graphs and an AVD-total-coloring to the set of disjoint complete graphs in
such a way that the result is an AVD-total-coloring to G. Also, we prove that this
coloring uses the required number of colors.

∗This work was supported by CNPq.
†ra123538@students.ic.unicamp.br , campos@ic.unicamp.br, celia@ic.unicamp.br
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Multicolored Ramsey Numbers in
Multipartite Graphs

Juliana Sanches1,∗ Emerson L. Monte Carmelo1,†

1 Departamento de Matemática, Universidade Estadual de Maringá

A great challenge in graph theory has been the determination of the Ramsey
numbers. Given positive integers n and m, recall that the celebrated Ramsey number
r(n,m) denotes the smallest natural number r such that every red-blue coloring of
the edges of the clique Kr with size r yields either a red copy of Kn or a blue copy
of Km.

Many concepts and variants have been introduced in order to shed light on
the computation of these numbers since 1940. In particular, Burger and Vuuren
[Discrete Mathematics, 283 (2004), 37-43] introduced the following Ramsey-type
problem. Let Kn×m denote the balanced, complete multipartite graph having n
classes, each class with m vertices. Given positive integers j, n ,m, p, and q, the set
multipartite Ramsey number Mj(Kn×m, Kp×q) is the smallest natural number c such
that every red-blue coloring of the edges of Kc×j yields either a red Kn×m or a blue
Kp×q.

These numbers can be regarded as an extension of the classical Ramsey numbers.
Indeed, note that M1(Kn×1, Km×1) = r(Kn, Km) = r(n,m), since Kn×1 is isomorphic
to Kn. Several results arising from relationships with the numbers r(n,m) are
derived. Moreover, general bounds are obtained, in particular, including a general
lower bound by using the probabilistic method.

In this work we extend the set multipartite to an arbitrary number of colors, as
described below. The number Mj(Kn1×m1 , Kn2×m2 , . . . , Knk×mk

) denotes the small-
est positive integer c such that for every coloring of the edges of Kc×j with k colors,
there is always a monochromatic copy of Kni×mi

for any i, where 1 ≤ i ≤ k.
We discuss the connections with the multicolored Ramsey numbers. Several re-

sults by Burger and Vuuren are extended, including general lower and upper bounds.
Moreover, we also prove sharper upper bounds for certain class of parameters. In
particular the bound M2(K2×3, K2×3) ≤ 13 is obtained by using a variant of the
Turán numbers, improving M2(K2×3, K2×3) ≤ 24 by Burger and Vuuren.

∗Suppoted by Capes.
†Partially supported by Fundação Araucária and CNPq. elmcarmelo@uem.br
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Edge colouring bisplit graphs

Romina González 1 Carmen Ortiz 2 Mónica Villanueva1

1 Universidad de Santiago de Chile
2 Universidad Adolfo Ibáñez

A graph G = (V,E) is bisplit graph if its vertex set can be partitioned into two
sets V = X+Y such that X is a stable set and Y induces a biclique (complete bipar-
tite graph). Brandstädt et al. developed a polynomial time recognition algorithm
[1]. Bisplit graph is a superclass of split graph and a subclass of comparability graph.

The chromatic index, χ′(G), of a graph G is the minimum number of colours
needed to colour the edges of G such that adjacent edges have different colours. Let
M be the maximum degree in G. Vizing [5] proves that χ′(G) is M or M +1. Graphs
for which χ′(G) =M are Class 1 and those for which χ′(G) =M +1 are Class 2. This
problem is NP-complete [3], and remains so for comparability graphs. Chen, Fu and
Ko [2] show that split graphs of odd maximum degree are Class 1.

A graph G is overfull if |E| >M b |V |
2
c where bxc denotes the greatest integer less

than or equal to x. All overfull graphs are Class 2 [4]. G is subgraph-overfull if there
is an overfull subgraph H of G with ∆(H) = ∆(G). Obviously, subgraph-overfull
graphs are Class 2. In this work, we show that a bisplit graph is Class 1 if it is not
subgraph-overfull.
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On selective-perfectness of graphs
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Let V ′ ⊆ V . We denote by G[V ′] the graph induced by V ′. A k-coloring of
G is a mapping c : V → {1, . . . , k} such that c(u) 6= c(v) for all uv ∈ E. The
smallest integer k such that G is k-colorable is called the chromatic number of G
and is denoted by χ(G). Consider now a partition V = (V1, V2, . . . , Vp) of the vertex
set V of G. We will denote by (G,V) the graph G together with a partition V of its
vertex set and call it a clustered graph. The sets V1, . . . , Vp are called clusters and
V is called a clustering.

A selective k-coloring of G with respect to V is a mapping c : V ′ → {1, . . . , k},
where V ′ ⊆ V with |V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p}, such that c(u) 6= c(v) for
all uv ∈ E. Thus determining a selective k-coloring with respect to V consists in
finding a set V ′ ⊆ V such that |V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p} and such that
G[V ′] admits a k-coloring. The smallest integer k for which a graph G admits a
selective k-coloring with respect to V is called the selective chromatic number of G
and is denoted by χsel(G,V). It is obvious to see that χsel(G,V) ≤ χ(G) for every
clustering V of V . The selective coloring problem it is known to be NP-hard even
in the disjoint union of paths of length three [1].

We define in this work the notion of selective perfectness and strong selective
perfectness, and characterize (strong) selective perfect graphs by matrix properties
and by forbidden configurations. We also study the recognition problem for each
class, and the complexity of the selective coloring problem on selective perfect and
strong selective perfect graphs.
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Feedback Vertex Set is NP-complete
for Reducible Flow Hypergraphs
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A directed hypergraph H = (V,A) is a pair [1, 2], such that V is a non-empty
finite set of vertices and A is a set of hyperarcs, where a hyperarc a = (X, Y ) is an
ordered pair with X, Y non-empty subsets of V . These structures can be used [2, 3]
to model parallel processes with precedence restrictions.

The feedback vertex set problem for hypergraphs has as input a directed
hypergraph H = (V,A) and a positive integer k, and the question is whether there
is a set S ⊂ V such that the removal of S from H produces an acyclic hypergraph.

In this work we are concern with feedback vertex set problem for flow
hypergraphs, a subclass of directed hypergraphs defined in [2]. We prove that feed-
back vertex set problem is NP-complete even for reducible flow hypergraphs.

The proof is a reduction from the 3–satisfiability problem with at most 3 occur-
rences per variable, which is known to be a NP-complete problem [4].

We also exhibit a polynomial-time 1
m

-approximation for finding a minimum feed-
back vertex set of a flow hypergraph, where m is the maximum number of hyperarcs
which a vertex of H belongs to.
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Complexidade de Problemas de
Conexão de Terminais
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1 Universidade Federal Fluminense
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Neste trabalho apresentamos algumas versões do problema de conexão de ter-
minais. Esse problema está intrinsecamente relacionado ao problema da árvore de
Steiner em grafos, o qual consiste em encontrar uma árvore de tamanho mı́nimo que
conecta um subconjunto de vértices W de G. A versão de decisão do problema da
árvore de Steiner pertence à classe NP-completo. No entanto, quando o tamanho
de W é limitado por uma constante k, o algoritmo de Dreyfus& Wagner computa
uma árvore de Steiner para W em tempo O(n3 + n22k−1 + n3k−1).

Dado uma árvore T , definimos alguns vértices especiais em T :

• se d(v) = 2 então v é denominado elo;

• se d(v) > 2 então v é denominado roteador.

A partir dessas definições, formulamos o seguinte problema:

Problema: Conexão de Terminais em Grafos (CTG)

Dados um grafo conexo G, um subconjunto de vértices W de G e dois inteiros l e
r, existe algum subgrafo conexo e aćıclico de G que contenha W com no máximo l
vértices elos e r vértices roteadores?

As motivações do estudo desse problema são diversas assim como os outros pro-
blemas de conectividade, tais como comunicações em multicast, projeto de circuitos
VLSI, na biologia computacional nos estudos de aproximação genética etc. Em
particular, um exemplo hipotético referente ao problema CTG é a questão de segu-
rança de tráfico de informação entre computadores numa rede, onde quanto menor
o número de roteadores menor é a chance de uma mensagem ser interceptada na
rede por intrusos mal-intencionados. Portanto, acreditamos que o problema CTG
definido é fascinante em suas aplicações no contexto atual.

Dentre os resultados obtidos mostramos que: (a) CTG permanece NP-completo
mesmo quando fixado um valor constante para o parâmetro l; (b) CTG permanece
NP-completo mesmo quando fixado um valor constante para o parâmetro r; (c)
CTG é polinomial para o caso onde r e l são fixos.
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Searching for a NP-Complete Probe
Graph Problem∗
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3 IME, Universidade Federal Fluminense, Brazil

A probe graph for a graph class C is a graph G = (V,E), such that there exists an
independent set N ⊆ V into which it is possible to add some edges between vertices
of N in order to obtain a graph G′ belonging to C[2]. If the independent set N is
given as input, we have a special case of graph sandwich problem[1]. Our interest
rests in this version of probe graph recognition problem.

A graph partition of a graph G = (V,E) is a partition of V (G) into a number
of parts. A graph partition problem consists in finding a graph partition where the
parts satisfy some internal or external contraints. A three nonempty part problem
is a graph partition problem, such that V (G) must be partitioned in exactly three
nonempty parts. All possible such nonempty part problems, reflecting the various
combinations of internal and external contraints, are classified as polynomial or
NP-complete in both recognition and sandwich versions [3].

We focused on probe three nonempty part recognition problems, for which its
sandwich version is NP-complete and its recognition version is polynomial. We
show that most of those probe problems have a behavior strongly similar to their
recognition version, despite being a special case of a NP-complete sandwich problem.
Finnaly, we compare this polynomial behavior to some yet unclassified problems,
for instance, probe clique cutset, identifying the dissimilarities and setting these as
candidate to be NP-complete.
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(k, `)-sandwich problem: why not ask
for special kinds of bread? ∗
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1 PESC/COPPE - Universidade Federal do Rio de Janeiro
2 IME - Universidade do Estado do Rio de Janeiro

3 IM - Universidade Federal do Rio Janeiro
4 IC - Universidade Federal Fluminense

In 1995, Golumbic et al. formulated the famous sandwich problem as follows:
Given two graphs G1 = (V,E1) and G2 = (V,E2) and a property Π is there a graph
G = (V,E) such that E1 ⊆ E ⊆ E2 and so that G satisfies the property Π? The
graph G is called sandwich graph. Note that in these problems it is chosen a special
filling for the sandwich.

The questioning we make here is: why not choose a particular kind of bread for
a special filling of our sandwich? So, we will present a new work proposal related
to graph sandwich problems: a generalized version that we called graph sandwich
problems with boundary conditions. Our goal is to determine the complexity of the
sandwich problem when beforehand we know that G1 satisfies a property Π1 and
G2 satisfies a property Π2, where Π1 and Π2 are called boundary conditions. Thus, we
define the sandwich problem for property Π with boundary conditions
Π1 and Π2, denoted by (Π1,Π,Π2)-sp, as the sandwich problem in which the input
consists of two graphs: G1 = (V,E1) satisfying property Π1 and G2 = (V,E2)
satisfying property Π2. Hence, (∗,Π, ∗)-sp denotes the general sandwich problem
for property Π, where the notation ∗ means that graphs G1 = (V,E1) and
G2 = (V,E2) do not satisfy necessarily any specified property.

In this paper we work with a particular property Π: “to be a (k, `)-graph”. A
graph is (k, `) if its vertex set can be partitioned into at most k independent sets
and at most ` cliques. Brandstädt et al. proved that the recognition problem
for (k, `)-graphs is NP-complete for k ≥ 3 or ` ≥ 3 and polynomial time solvable
otherwise. When G is chordal, Hell et al. proved that the recognition problem
for chordal-(k, `) graphs can be done in polynomial time. Furthermore, (Dan-
tas et al.) proved that the sandwich problem for (k, `)-graphs is NP -complete
for k ≥ 2 and ` ≥ 1.

However, using this new proposal we have good news proving that the (chordal,
(k, `), chordal)-sp is polynomial time solvable for any k, ` fixed. Moreover, we
can generalize this result by requiring G1 to be a perfect graph and G2 to have a
polynomial number of cliques.

∗This research was partially supported by CNPq, CAPES and FAPERJ.
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