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Preface

These abstracts were selected for presentation at LAWCG14, that will be held in Pirenópolis-

GO, Brazil. The Latin American Workshop on Cliques in Graphs (LAWCG) series was

started in Rio de Janeiro/Brazil (2002). The next editions were La Plata/Argentina (2006),

Guanajuato/México (2008), Itaipava/Brazil (2010) and Buenos Aires/Argentina (2012).

The workshop is meant to foster interaction between the Latin-American graph theory and

combinatorics community, whose research interests include cliques, cliques graphs, and re-

lated issues. In this sixth edition, the workshop has approximately 75 participants and 48

contributed talks.

Following an established tradition, a special issue of Matemática Contemporanea will be

devoted to a selection of refereed full papers from the event. The deadline for submission

to this issue will be posted in due time on the LAWCG14 website http//www.inf.ufg.br/

lawcg14.

We would like to thank all members of Program and Organizing Committees. Especially,

we want to thank the Steering Committee for entrusting us the organization of this edition

of the workshop.

We are grateful to all participants for their contributions and particularly to the invited

speakers. We would also like to thank our sponsoring agencies. The financial support

received from CNPq, Capes and FAPEG was essential to this event.

Last but not least, we sincerely thank Instituto de Informática of Universidade Federal de

Goiás and Instituto Federal Goiano of Rio Verde-GO by the received support.

Finally, we wish all participants have an interesting and stimulating event and a joyful stay

at Pirenópolis.

Márcia Cappele and Erika Coelho (Conference Chairs)
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Complexity and Algorithms I (9:20 – 10:35) – Room Ita e Alaor 11

11 Reversible Processes on Graphs
Mitre C. Dourado, Carlos V. G. C. Lima, Jayme L. Szwarcfiter

12 On the complexity of the Cluster Deletion problem for several graph classe
Flavia Bonomo, Guillermo Durán, Mario Valencia-Pabon

13 Approximative algorithms for the maxcut of chordal graphs
Luerbio Faria, Rubens Sucupira, Sulamita Klein

Coffee Break (10:35 – 11:00)

Coloring I (11:00 – 12:15) – Room Cavalhadas/Pastorinhas 14

14 Distance coloring problems, spatial properties and feasibility conditions
Rosiane de Freitas, Bruno Raphael Dias, Jayme L. Szwarcfiter

15 Choosability for restricted list coloring problems
Rosiane de Freitas, Simone Santos, Flavio Coelho, Mario Salvatierra

16 Acyclic edge coloring of the complete bipartite graph K2p,2p

Natacha Astromujoff, Mart́ın Matamala

Graph classes I (11:00 – 12:15) – Room Ita e Alaor 17

17 Forbidden subgraph characterization of star directed path graphs that are not rooted
directed path graphs
M. Gutierrez, S. Tondato

18 On the class [h; 2; 2] local
L. Alcón, M. Gutierrez, M. P. Mazzoleni

3



VI Latin American Workshop on Cliques in Graphs, Pirenopólis, Brazil, November 9 – 12, 2014.

19 On Restricted Multi-break Rearrangement and Sorting Separable Permutations.
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46 Maximal Independent sets in cylindrical grid graphs
Rommel M. Barbosa, Márcia R. Cappelle
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Cliques in Parameterized Hardness

Michael R. Fellows

Charles Darwin University, Australia

Problems about cliques underpin most hardness results in parameterized com-
plexity, both in the sense of W -hardness, and in the “more modern” optimality
program. The talk will survey the basic ideas, and give a how-to tutorial on proving
W [1]-hardness results by reductions from Multicolor Clique.
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Partitioning Distance Hereditary Graphs into
stable sets and cliques

João Thompson1 Loana Nogueira1 Fábio Protti1

Raquel Bravo2

1 Universidade Federal Fluminense, {jthompson, loana, fabio}@ic.uff.br
2 Universidade Federal Rural do Rio de Janeiro, raquelbr.ic@gmail.com

In this work we consider the problem of partitioning a graph into k independent
sets and l cliques, known as the (k, l)-Partition Problem, which was introduced by
Brandstädt, and generalized by Feder, Hell, Klein and Motwani as the M-Partition
Problem. Brandstädt proved that, given a graph G, it is NP-Complete to decide
if G is a (k, l)-graph for k ≥ 3 or l ≥ 3. Particularly, we consider a subclass of
perfect graphs: Distance Hereditary Graphs (DHG), which consists of graphs with
isometric distances (every induced path between two vertices has the same length).
We present a characterization of (k, 1)-DHG in terms of forbidden subgraphs, i.e.,
minimal obstructions.

For the sake of characterizing (k, 1)-DHG, we make use of the characterization
of (k, l)-cograph and restricted our search to those graphs that are DHG and are
not cographs - denoted as Special Distance Hereditary Graphs (SDHG). Therefore
our goal is to prove the following theorem:

Theorem 1 Let G be a SDHG graph. Then G admits a (k, 1)-partition iff G is
(G1, G2)-free.

Here, G1 and G2 represent two special infinite graph families.

VI Latin American Workshop on Cliques in Graphs, Pirenopólis, Brazil, November 9 – 12, 2014.
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Disimplicial arcs, transitive vertices, and
disimplicial eliminations

Martiniano Egúıa1∗ Francisco J. Soulignac2†

1 DC–FCEN, Universidad de Buenos Aires
2 CONICET and Universidad Nacional de Quilmes

In this talk we consider the problems of finding the disimplicial arcs of a sparse
digraph and recognizing some interesting graph classes defined by their existence. A
diclique of a digraph G is a pair V → W of sets of vertices such that v → w is an arc
for every v ∈ V and w ∈ W . An arc v → w is disimplicial when N−(w) → N+(v)
is a diclique. For E ⊆ E(G), a sequence S = v1 → w1, . . . , vk → wk ⊂ E is a
disimplicial E-elimination scheme (E-DES) when vi → wi is disimplicial in Gk =
G \ {v1, w1, . . . , vk, wk}. If no edge of E is disimplicial in Gk, then S is maximal,
while S is perfect when Gk is empty.

In the first part we show that the problem of finding the disimplicial arcs is
equivalent, in terms of time and space complexity, to that of locating the transi-
tive vertices. As a result, an O(αm) time and O(m) space algorithm to find the
bisimplicial edges of bipartite graphs is obtained, where m and α are the number
of edges and the arboricity of the input graph, respectively. This improves upon
the previous O(nm) time and O(m) space algorithm for sparse graphs (M. Bomhoff
and B. Manthey. Bisimplicial edges in bipartite graphs. Discrete Appl. Math.,
161(12):16991706, 2013.)

In the second part, we develop two simple algorithms to build disimplicial elimi-
nation schemes. The first algorithm finds a maximal E(G)-DES inO(min{∆η,m}m)
time, while the second one finds a maximal E-DES in O(αm) for any given match-
ing E. Here ∆ is the maximum among the degrees of the vertices and η ≤ m1/2

is the h-index of the graph. Both algorithms can be used to solve the respective
problems of finding perfect eliminations schemes of bipartite graphs. The previous
best algorithms for this problem on sparse graphs run in O(m2) time and O(nm)
time, respectively. (M. Bomhoff. Recognizing sparse perfect elimination bipartite
graphs. Lecture Notes in Comput. Sci. 6651:443–455, 2011.)

Finally, we study two classes related to perfect disimplicial elimination digraphs,
namely weakly diclique irreducible digraphs and diclique irreducible digraphs. A
digraph G is weakly diclique irreducible when every arc of G belongs to a diclique
that contains a disimplicial arc, while it is diclique irreducible digraphs as those
digraphs in which every maximal diclique has a disimplicial arc. We show that
the former class is related to finite posets, while the latter corresponds to dedekind
complete finite posets.

∗meguia@dc.uba.ar
†francisco.soulignac@unq.edu.ar; partially supported by PICT-2013-0586 Grant.
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Experimental Analysis of Exact Algorithms
for the Maximum Clique Problem

Cleverson Sebastião dos Anjos∗ Alexandre Prusch Züge†

Renato Carmo‡

Universidade Federal do Paraná

There are a number of proposed algorithms for the exact solution of the Maximum
Clique (MC) problem which are reported to effectively solve instances of practical
interest (some of them of considerable size) in several domains. Among them, branch
and bound based schemes stand out as the best approach in practice.

One problem in comparing these algorithms is the way their merits are presented
in the literature. Generally speaking, each author presents the outcome of their work
by providing the results obtained by carrying out experiments concerning “their
algorithm”. The resulting comparison of experimental data, then, compares data
from different implementations running under different computational environments.

Eight of these branch and bound algorithms for MC were described in [1] under
a unifying conceptual framework which leads naturally to an unified implementation
of them as parameterized versions of a general branch and bound routine.

Although this implementation is particularly well suited for a direct confrontation
of the performances of the algorithms such was not the main intent of their work. As
the authors themselves put, the intent of the experimental results was only to give
to the reader an understanding and sense of dimension of the practical differences
between the different approaches.

In this work we apply the concepts of Experimental Algorithm Analysis as exposed
in [2] in order to perform a more thorough experimental structured confrontation
of the algorithms studied in [1] by, but not limited to, defining an experimental
process, establishing a structured testing environment, applying an experimental
design model in a systematical manner and displaying the data gathered under
different perspectives. While performing a comparison between the algorithms from
[1] we also aim at reporting our “hands on” experience with some of the ideas and
methodology from [2].

References
[1] Renato Carmo and Alexandre Züge. Branch and bound algorithms for the maximum clique problem under a

unified framework. Journal of the Brazilian Computer Society, 18(2):137–151, December 2012.

[2] Catherine C. McGeoch. A guide to experimental algorithmics. Cambridge University Press, 2012.

∗csanjos@inf.ufpr.br
†alexandrezuge@ufpr.br
‡renato@inf.ufpr.br
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Reversible Processes on Graphs∗

Mitre C. Dourado1,3 Carlos V.G.C. Lima2,3

Jayme L. Szwarcfiter1,2,3

1 I. Mat., NCE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2 PESC, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3 mitre@nce.ufrj.br, gclima@cos.ufrj.br, jayme@nce.ufrj.br

Given a finite, simple, undirected and connected graph G and a function f :
V (G) → N we study the iterative process on G such that, given an initial vertex
labelling c0 : V (G) → {0, 1}, each vertex v changes its label if and only if at least
f(v) neighbors have the different label. The transitions occur in synchronous way
for each integer time step t ≥ 0. Such processes model opinion dissemination and
have been studied under names such as local majority processes or iterative polling
processes in a large variety of contexts, especially in distributed computing.

It is known that these processes reach periodic behavior after a polynomial num-
ber of time steps, called transient length. In this work, we give a tight upper bound
for the transient length of such processes.

We also study the problem of to find the minimum number rf (G) of vertices
with initial state equals 1, such that, during the process on G, every vertices reach
state 1. Given a constant k, we show that is NP-complete to determine if rf (G) ≤ k
even if G is a bipartite graph with ∆(G) ≤ 3 and f : V (G) → {1, 2, 3}. We also
prove that is NP-complete to determine if rf (G) ≤ k even if G is a cubic planar
graph and f : V (G)→ {3}. The last result comes from relationship between rf (G)
and the size of a minimum covering of G, β(G), where we show that rf (G) = β(G),
if there is a minimum covering that does not induce an independent set in G, or
rf (G) = β(G) + 1, otherwise.
Keywords: reversible processes, transient length, Rf -Conversion Set Problem.

∗Partially supported by CAPES, CNPq and FAPERJ/Brazilian research agencies.
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On the complexity of the Cluster Deletion
problem for several graph classes∗

Flavia Bonomo1 Guillermo Durán2 Mario Valencia-Pabon3,†

1 CONICET and DC, FCEN, UBA, Argentina. e-mail: fbonomo@dc.uba.ar
2 CONICET and DM and IC, FCEN, UBA, Argentina, and DII, FCFM, U. Chile,

Santiago Chile. e-mail: gduran@dm.uba.ar
3 Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse,

France. e-mail: mario.valencia-pabon@lipn.univ-paris13.fr

A cluster graph is a graph in which every connected component is a clique. The cluster
deletion problem (CDP) (resp. weighted cluster deletion problem (WCDP)) asks for the
minimum number (resp. weight) of edges that can be removed from an input graph to
obtain a cluster graph. We summarize in the following table some known results and the
results obtained in this work, that are boldfaced in the table.

Class CDP Reference WCDP
General NP-c Shamir, Sharan, and Tsur, 2004 NP-c

Complete split P NP-c
3-split P NP-c
Split P NP-c

P5-free chordal NP-c NP-c
Block P P

Interval ? NP-c
Proper interval P ?
Paths of cliques P P
Trees of cliques P NP-c

Cographs P Gao, Hare, and Nastos, 2013 NP-c
P4-reducible P NP-c

∆ = 3 P Komusiewicz and Uhlmann, 2012 ?
C4-free with ∆ = 4 NP-c Komusiewicz and Uhlmann, 2012 NP-c

(C5, P5)-free NP-c Gao, Hare, and Nastos, 2013 NP-c
(2K2, 3K1)-free NP-c Gao, Hare, and Nastos, 2013 NP-c

(C5, P5, bull, 4-pan, fork,
co-gem, co-4-pan)-free NP-c Gao, Hare, and Nastos, 2013 NP-c

∗Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), UBA-
CyT Grant 20020100100980, CONICET PIP 112-200901-00178 and 112-201201-00450CO and ANPCyT
PICT 2012-1324 (Argentina), FONDECyT Grant 1140787 and Millennium Science Institute “Complex
Engineering Systems” (Chile).

†Currently in “Délégation” at the INRIA Nancy - Grand Est 2013-2015.
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Approximative algorithms for the maxcut of
chordal graphs

Luerbio Faria∗1 Rubens Sucupira†1 Sulamita Klein‡23

1 IME/UERJ
2 Instituto de Matemtica/UFRJ

3 COPPE/Sistemas/UFRJ

Given a graph, the simple max-cut problem asks to find a partition of its vertex
set into two disjoint sets, such that the number of edges having one endpoint in each
set is as large as possible. It is known that the simple max-cut decision problem is
NP-complete for general graphs and there is a polynomial time (1/2)-approximation
algorithm to solve this problem. In particular, [1] proved that this problem remains
NP-complete for split graphs. A split graph is a graph whose vertex set admits a
partition into a stable set and a clique. [2] developed a semidefinite programming
approximation algorithm with approximation ratio of 0,87856 to solve the simple
max-cut problem for general graphs. In this paper we show a polynomial time
(2/3)-approximation algorithm for simple maxcut of split graphs and deterministic
algorithms for simple maxcut of full (k,n)-split graphs using only simple combina-
torial methods. Furthermore, we use the perfect elimination ordering of a chordal
graph G to find an approximation algorithm to solve the simple max-cut problem
on chordal graphs with ratio 1− D

m
, where m is the number of edges of G and D is

the number of edges on the maximum clique of G that don’t are in the maximum
cut of that clique.

References

[1] BODLAENDER, H. L. AND JANSEN, K. On the complexity of the Maximum Cut problem,
Lecture Notes on Computer Science, Volume 775 (1999) 769-780.

[2] GOEMANS, M. X.; WILLIAMSON, D. P. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
v. 42, n. 6, p. 1115-1145, 1995.

∗luerbio@cos.ufrj.br
†rasucupira@oi.com.br
‡sula@cos.ufrj.br
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Distance coloring problems, spatial properties
and feasibility conditions

Bruno Raphael Dias1 Rosiane de Freitas1

Jayme Szwarcfiter2‡,

1 Institute of Computing, Federal University of Amazonas
2 NCE, IM and COPPE - Federal University of Rio de Janeiro

Graph coloring composes a large and important class of combinatorial optimiza-
tion problems that has been extensively studied in the literature. One of its key
applications is in the planning of resource allocation in mobile wireless networks.
In this work, we present some theoretical graph coloring models, where the coloring
should respect certain geographic and technological distance constraints. We show
these coloring problems with distance constraints from the geometric distance point
of view, that is, as the positioning of the vertices on the nonnegative integer line
(or, as the immersion of the graph in 1-dimension), where the point on the line cor-
responds to the color to be assigned to a vertex, according to the distance between
adjacent vertices. In addition, we have demonstrated for some classes of graphs,
when these problems have, or do not have, feasible solutions.
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Choosability for restricted list coloring
problems

Simone Santos1 Rosiane de Freitas1 Mrio Salvatierra1‡,

1 Institute of Computing, Federal University of Amazonas

Coloring problems with special constraints, adds a set of additional conditions
on how the colors should be assigned to the vertices, edges, or both. Among these
problems, the list coloring problem is a proper coloring of a graph G = (V,E) in
which to each vertex v ∈ V (G) is associated a list of allowed colors L(v). A list
coloring is a choice function that maps every vertex v to a color in the list L(v). List
coloring was first studied by Vizing and by Erdos, Rubin, and Taylor. We investigate
this problem considering several conditions under the list of available colors for each
vertex: when the values are contiguous and the lower and upper bounds are known;
when the lists have the same size or not; etc. For such restricted list coloring
problems, we check the behavior of the choosability property for some classes of
graphs. A graph is k-choosable (or k-list-colorable) if it has a proper list coloring
no matter how one assigns a list of k colors to each vertex. The choosability (or list
chromatic number) χ(G) of a graph G is the least number k such G is k-choosable.
The choice number of G is equal to k if G is k-choosable but not (k− 1)-choosable.
In this work, implicit enumeration algorithms and heuristics for determining the
choice number k of a graph, considering such restricted list coloring problems are
also discussed.
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Acyclic edge coloring of the complete
bipartite graph K2p,2p

Natacha Astromujoff, nastromujoff@dim.uchile.cl1

Mart́ın Matamala, mmatamal@dim.uchile.cl2,∗

1 Departamento de Matemáticas, Universidad de Chile, Santiago, Chile.
2 CMM-DIM, UMI-CNRS 2807, Universidad de Chile, 8370459 Santiago, Chile.

Abstract

An acyclic edge coloring of a graph is a proper coloring of its edges in which
the subgraph induced by any two colors has no cycles. The acyclic chromatic
index of a graph G is the smallest integer k such that there is an acyclic edge
coloring of G using k colors; it is denoted by a′(G). It has been conjectured
that a′(G) ≤ ∆ + 2, for any G. Let Kn,n denote the complete bipartite graph
with independent sets of size n. The only values of n for which it is known that
a′(Kn,n) ≤ n+ 2, are when n ∈ {p, p2, 2p− 1}, for a prime p. In this work we
improve on the best known generic upper bound a′(Kn,n) ≤ 5n, when n = 2p
and p is prime. We prove that a′(K2p,2p) ≤ 2p + 4, for each p prime. The
construction used to color the graph is based on a one-factorization of K2p,2p

with p2 pairs of perfect matchings inducing a Hamiltonian cycle. This latter
construction is extended to each Kn,n, with n even, showing that pf(n) = n2

4 ,
where pf(n) is the maximum over all one-factorizations F of Kn,n of the
number of pairs of perfect matchings in F inducing a Hamiltonian cycle in
Kn,n.

∗Partially supported by program Basal-CMM (M.M.) and Núcleo Milenio Información y Co-
ordinación en Redes ICM/FIC P10-024F(N.A. and M.M.)
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Forbidden subgraph characterization
of star directed path graphs that are

not rooted directed path graphs

M. Gutierrez 1,2 S. Tondato2

1 Conicet
2 Dto. de Matemática, FCE-UNLP.

Gavril proved that a graph G is chordal if and only if there is a tree T , called
clique tree, or model, whose vertices are the cliques of the graph and for every
vertex x of G the cliques that containing x induce a subtree in the tree which we
will denote by Tx. Natural subclass of chordal graphs are directed path graphs and
rooted directed path graphs. A graph G is a directed path graph (respectively rooted
directed path graph) if it there exists a model T that can be oriented (respectively
oriented and rooted) and such that Tx is a oriented subpath of T for every x ∈ V (G).

Panda presented the characterization of directed path graphs by forbidden in-
duced subgraphs.

Characterizing rooted directed path graphs by forbidden induced subgraphs is
an open problem. It is certainly too difficult a characterization of this class by
forbidden induced subgraphs as there are too many (families of) graphs to exclude
but in [1] was proposed a conjecture to characterize rooted directed path graph. In
this original form this conjecture is not complete but in [3] was proved on directed
path graphs with leafage four having two minimal separators which has multiplicity
two.

A graphs is a star directed path graph if it is a directed path graph and has
a directed path model that is a star. This class of graphs contains directed path
graphs that are split and it has intersection with directed path graphs with leafage
four having two minimal separators which has multiplicity two. In this work, we
prove that minimal star directed path graphs that are not rooted path graphs has
leafage four. Thus we build the family of forbidden for this class.
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On the class [h, 2, 2] local

L. Alcón 2 M. Gutierrez 1,2 M. P. Mazzoleni 1,2

1 Conicet
2 Dto. de Matemática, FCE-UNLP.

An (h,2,2)-representation of a graph G is a pair 〈P , T 〉 where T is a tree with
maximum degree h and P is a family (Pv)v∈V (G) of subpaths of T satisfying that two
vertices v and v′ of G are adjacent if and only if Pv and Pv′ have at least two vertices
(one edge) in common. We let [h,2,2] denote the class of graphs which admit an
(h, 2, 2)-representation. The well known class of EPT graphs (also called UE) is the
union of the classes [h, 2, 2] for h ≥ 2. Determining the family of forbidden induced
subgraphs for being EPT is an intricate open problem.

Our aim is to characterize by forbidden induced subgraphs the class [h, 2, 2] for
a fixed h. For this purpose, we search minimal structures in an EPT graph, that
cannot be represented using a host tree with maximum degree h.

We define recursively the following family of graphs we have called gates :

(i) A chordless cycle Cn is a gate for every n ≥ 4;

(ii) If G is a gate, C and C ′ are disjoint cliques (maximal complete subgraphs)
of G, and P : v1,...,vk is a chordless path disjoint from G with k ≥ 2, then
the union of G and P plus all edges between v1 and the vertices of C, and all
edges between vk and the vertices of C ′ is a gate.

(iii) There are no more gates.

If the number of cliques of a gate G is h then we say that G is an h-gate.
In this work, we show that h-gates are EPT graphs that cannot be represented

in a host tree with maximum degree less than h, this generalizes one of our previous
results 1. Even more, we conjecture that an EPT graph belongs to [h, 2, 2] if and
only if it has no induced subgraph isomorphic to a k-gate for k > h.

We also prove that the conjecture is true in a subclass of local-EPT graphs,
this is the EPT graphs that admit a representation in which all paths of P share a
vertex of T .

E-mail addresses: liliana@mate.unlp.edu.ar (L. Alcón); marisa@mate.unlp.edu.ar
(M. Gutierrez); pia@mate.unlp.edu.ar (M. P. Mazzoleni).

1EPT graphs on bounded degree trees, Matemática Contemporánea. 42 (2014) 1-8.
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On Restricted Multi-break Rearrangement
and Sorting Separable Permutations

Lúıs F. I. Cunha1,∗ Rodrigo de A. Hausen2,†

Luis A. B. Kowada3,‡ Celina M. H. de Figueiredo1,§

1 PESC/COPPE – UFRJ
2 UFABC

3 IME – UFF

A multi-break rearrangement represents most of genome rearrangements, as
transpositions and reversals, a k-break cuts k adjacencies over a permutation, and
forms k new adjacencies by joining the extremities according to an arbitrary match-
ing [1]. Although the transposition and the reversal distances are both NP -hard
problems [2, 3], the multi-break distance between two permutations is computed in
polynomial time [1]. In this work we focus on the restricted multi-break rearrange-
ment rmb, a restricted k break rmb(a, b; c1↔d1; . . . ; ck↔dk) inverts the block from
position a to b, maintaining the order from position c1 to d1, ..., and from position
ck to dk.

A cograph is a P4-free graph, subclass of the permutation graph. The permu-
tations that characterize the cographs are the separable permutations, exactly the
permutations which do not contain neither [2 4 1 3] nor [3 1 4 2] as a pattern, i.e. do
not contain a subsequence of four elements whose relative order matches one of the
two permutations above [4]. We study the sorting by restricted multi-break problem
where we give a lower bound on the rmb distance, and we give the exact distance
for the separable permutations, considering the corresponding cotrees.
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On the b-continuity of graphs

Márcia R. Cerioli

Universidade Federal do Rio de Janeiro, Brazil

A b-coloring of a graph is a (proper) coloring of its vertices such that for each
color class there is at least one vertex that is adjacent to all possible colors. A
k-b-coloring is a b-coloring on k colors.

One peculiar characteristic of b-colorings is that for some graphs there is an
integer k such that G has both a k − 1 and a (k + 1)-b-coloring but does not have
any k-b-colorings. Otherwise, G is called a b-continuous graph.

In this talk I will survey results concerning b-continuity of graphs belonging to
special graph classes.
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Cliques, Coloring and Satisfiability: from
structure to algorithms

Vadim Lozin

University of Warwick, England

Cliques, coloring and satisfiability are three central problems of theoretical com-
puter science each of which is generally NP-hard. On the other hand, each of
them may become tractable when restricted to instances of particular structure. In
this talk we analyze how the structure of the input can affect the computational
complexity of these problems. We also discuss some algorithmic tools to solve the
problems with a focus given to transformations of graphs and of CNF formulas.
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Periphery and convexity of a graph∗,†
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1 Instituto de Ciência e Tecnologia, Universidade Federal Fluminense, Brasil
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3 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brasil
4 NCE, Universidade Federal do Rio de Janeiro, Brasil

5 COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Brasil

Let G = (V (G), E(G)) be a finite, simple and connected graph. Given a set
S ⊆ V (G), we say that S is geodetic if the set of vertices lying on shortest paths
between any pair of vertices of S is equal to V (G). We say that S is monophonic
if the set of vertices lying on an induced path between any pair of vertices of S is
equal to V (G). The eccentricity of a vertex v is the number of edges in the greatest
shortest path between v and any vertex w of G. The diameter diam(G) of a graph
G is the maximum eccentricity of the vertices in V (G). The periphery Per(G) of G
is the set formed by vertices v such that the eccentricity of v is equal to the diameter
of G. The contour of G is the set of vertices v such that no neighbor of v has an
eccentricity greater than v.

The problem of determining whether the contour of a graph class is geodetic was
proposed in 2005 by Cáceres et al.. After this, many papers were published about
this subject. In some of them the authors investigated the problem for specific
classes of graphs. In 2013 Artigas et al. established a condition for the contour of
a graph G to be geodetic in terms of the diameter of G. In this work we extend
these results for the periphery of a graph. We also consider the problem of deciding
whether Per(G) is a monophonic set. We remark that the contour of a graph is
always monophonic.

We show that if diam(G) ≤ 2 then Per(G) is geodetic, and Per(G) is not
necessarily geodetic if diam(G) > 2. Particularly, we characterize the graphs G
with diam(G) = 3 such that Per(G) is not geodetic. These results lead us to solve
the problem for classes of graphs like cographs, chordal, split and threshold graphs.
We show that the same conditions do not generalize for graphs with diameter equal
to 4. We prove that if G is a power of a path, then Per(G) is a geodetic set, and show
a infinite family of unit interval graphs for which the periphery is not geodetic. In
addition, we describe graphs, for which the contour is geodetic and the periphery is
not a geodetic set. Finally, we consider the problem of determining whether Per(G)
is a monophonic set.

∗This research was partially supported by FAPERJ, CNPq, CAPES and PROPPI/UFF.
†daniloartigas@puro.uff.br, sdantas@im.uff.br, mitre@nce.ufrj.br, jayme@nce.ufrj.br

VI Latin American Workshop on Cliques in Graphs, Pirenopólis, Brazil, November 9 – 12, 2014.

22



On the l-neighborhood convexity
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Let G be a finite, simple, and undirected graph and let S be a set of vertices
of G. We say that a set S ⊆ V (G) is a convex set if every vertex in V (G) \ S has
less than l neighbors in S. The convex hull HG(S) of S is the smallest convex set
containing S. A hull set of G is a set of vertices whose convex hull equals the whole
vertex set of G, and the minimum cardinality of a hull set of G is the hull number
h(G) of G. Finally, the Carathéodory number of G is the smallest integer c such that
for every set S and every vertex u in HG(S), there is a set F ⊆ S with |F | ≤ c and
u ∈ HG(F ).

In [1], it has been determined the Carathéodory number of trees and in [2] it
has been determined the hull number of the cographs, both, in the 2-neighborhood
convexity.

In this work, we study the hull number and the Carathéodory number for the
l-neighborhood convexity of graphs considering l > 2. We determine the hull num-
ber for cographs in the 3-neighborhood convexity and determine the Carathéodory
number of trees for l-neighborhood convexity, where l > 2.
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A tight upper bound for the Helly number of
the geodetic convexity on bipartite graphs

Mitre Costa Dourado ∗ Aline Rodrigues da Silva †

PPGI, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

In this work we consider finite, simple and undirected graphs. Consider a graph
G. In the geodetic convexity on G, a set of vertices S ⊆ V (G) is (geodesically)
convex if the vertices of any shortest path joining the vertices of S is contained in S.
The (geodetic) convex hull of S, H(S), is the smallest convex set containing S. In
the monophonic convexity these concepts are defined similarly by simply replacing
“shortest paths” by “induced paths” in the definition of convex sets.

The core of a family of sets is the total intersection of the sets of this family. A
family of sets F is k-intersecting if the core of every k sets of F has non-empty core.
A family of sets F is k-Helly if every k-intersecting subfamily of F has non-empty
core. The Helly number of F is the smallest number h such that F is h-Helly. The
Helly number of the convexity C on a graph G is the Helly number of the family
defined by the convex sets of the convexity C on G.

A survey on computational aspects of the Helly number can be found in [1].
In [2] it was shown that the Helly number of the monophonic convexity on any

graph G is equal to the size of the maximum clique of G.
In this work we present an upper bound for the Helly number of the geode-

tic convexity on bipartite graphs and construct an infinity family of graphs G =
{G1, . . . , Gk, . . .}, where Gi ∈ G is an example of a bipartite graph with Helly num-
ber i in the geodetic convexity reaching the bound, therefore showing that the bound
is tight.
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On the diameter of the Cayley Graph Hl,p
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In this work, our interests are in the design and analysis of static networks.
Static networks can be modeled using tools from Graph Theory. The graph is the
interconnection network, the processors are the vertices and the communication
links between processors are the edges connecting the vertices. There are several
parameters of interest to specify a network: low degree, low diameter, and the
distribution of the node disjoint paths between a pair of vertices in the graph. The
degree relates to the port capacity of the processors and hence to the hardware cost
of the network. The maximum communication delay between a pair of processors
in a network is measured by the diameter of the graph. Thus, the diameter is a
measure of the running cost.

The definition of Cayley graphs was introduced to explain the concept of abstract
groups which are described by a generating set. The Cayley graphs are regular, may
have logarithmic diameter, are maximally fault tolerant and have a rich variety
of algebraic properties. One such algebraic property is that Cayley graphs are
vertex transitive, i.e., the graph looks the same when viewed from any vertex. One
important consequence of the vertex transitivity is that a guest structure embedded
in one region of the host network can be readily translated to another region without
affecting the quality of the original embedding.

The family Hl,p has been defined in the context of edge partitions, subsequently
shown to be composed by Hamiltonian Cayley graphs, and after we showed an
algorithm to calculate the diameter of graph Hl,p of time O(l). The established
properties support the graph Hl,p to be good schemes of interconnection networks.
We consider families of Cayley graph Hl,p. The pl−1 vertices of the graph Hl,p are
the l-tuples with values between 0 and p − 1, such that the sum of the l values
is congruent to 0 mod p, and there is an edge between two vertices having two
corresponding pairs of entries whose values differ by one unit. Our goal is to find
the diameter of Cayley graph Hl,p with complexity O(log(l + p)). In this work, we
present new results on the diameter D = p·l

4
of the Cayley graph Hl,p when l and p

are even.
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Grafos de Permutação Redut́ıveis Canônicos:
caracterização, reconhecimento e aplicação a
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Um grafo de fluxo redut́ıvel G = (V,E, s) é um grafo direcionado com uma fonte
s ∈ V (G), tal que, para cada ciclo C de G, todo caminho direcionado de s a C chega
a C pelo mesmo vértice de C. Diversas pesquisas na área de proteção de software
desenvolvidas recentemente estão relacionadas a uma subclasse dos grafos de fluxo
redut́ıveis, chamada de grafos de permutação redut́ıveis [1, 2]. Tais grafos possuem,
entre outras caracteŕısticas, caminho hamiltoniano único.

Neste trabalho, apresentamos uma caracterização de uma subclasse dos grafos de
permutação redut́ıveis, chamada grafos de permutação redut́ıveis canônicos. Como
consequência desta caracterização, que é baseada em propriedades estruturais, ob-
tivemos um algoritmo linear de reconhecimento. Grafos de permutação redut́ıveis
canônicos podem ser utilizados para codificar marcas d’água digitais, e correspon-
dem de fato aos grafos gerados pelo algoritmo de codificação de marcas d’água
apresentado em [2]. Além da caracterização e do reconhecimento de tais grafos,
apresentamos um algoritmo polinomial que recupera, sempre que posśıvel, um grafo
da classe com um número constante de arestas removidas, e também um algoritmo
linear para restaurar grafos de permutação redut́ıveis canônicos com até duas arestas
removidas — o que provamos ser sempre posśıvel.
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Sistemas modulares de d́ıgitos verificadores
ótimos

Natália Pedroza de Souza Paulo Eustáquio Duarte Pinto
Luerbio Faria∗

Universidade do Estado do Rio de Janeiro

Neste trabalho discutimos vários sistemas de d́ıgitos verificadores utilizados no
Brasil, muitos deles semelhantes a esquemas usados mundialmente [3, 4], e fazemos
uma análise da sua capacidade de detectar os diversos tipos de erros que são co-
muns na entrada de dados em sistemas computacionais. A análise nos mostra que
os esquemas escolhidos constituem decisões subotimizadas e quase nunca obtêm a
melhor taxa de detecção de erros.

Os sistemas de d́ıgitos verificadores são baseados em três teorias da álgebra [1, 2]:
a-ritmética modular, teoria de grupos e quasigrupos. Focamos o estudo nos sistemas
baseados em aritmética modular, para os quais apresentamos várias melhorias que
podem ser introduzidas. Desenvolvemos um novo esquema ótimo baseado em ar-
itmética modular base 10 com três permutações que utiliza um d́ıgito verificador
para identificadores numéricos de tamanho maior do que sete. Para identificadores
de tamanho até sete, descrevemos o esquema Verhoeff, já antigo, mas pouqúıssimo
utilizado e que também é uma alternativa de melhoria.

Desenvolvemos ainda, esquemas ótimos para qualquer base modular prima que
detectam 100% dos tipos de erros considerados. Estes podem ser utilizados para
identificadores alfanuméricos ou identificadores numéricos utilizando dois d́ıgitos
verificadores. Fazemos uso ainda de elementos da estat́ıstica, no estudo das proba-
bilidades de detecção de erros e de algoritmos, na obtenção de esquemas ótimos.
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A biclique of a graph is a vertex set that induces a maximal complete bipartite
subgraph. The biclique graph of a graph G, denoted by KB(G), is the intersection
graph of the bicliques of G.

For a graph class C, KB(C) denotes the family of biclique graphs of graphs in C.
In this work we studied KB(C) for some graph classes: split graphs, threshold

graphs, gem-free split graphs and bipartite permutation graphs. We seek for proper-
ties, characterizations, recognition algorithms and/or determine the computational
complexity of the recognition problem. That is, given a graph G we ask if there
exists a graph H in C such that G = KB(H).

When C is the class of split graphs we proved that every graph G ∈ KB(C) has
diameter less or equal to 2; the connectivity (and edge-connectivity) of G is greater
or equal to 2(n−2), where n is the number of vertices of the complete part of the split
graph; and G is hamiltonian. Also, every graph H is an induced subgraph of some
graph of KB(C), which implies that KB(C) has no forbidden induced subgraphs.

For the threshold graphs and gem-free split graphs (which are subclasses of split
graphs), we found polynomial time algorithms for the recognition problem of the
class KB(C).

At the moment we are working on the case where C is the class of bipartite
permutation graphs. We proved that KB(C) ⊂ interval graphs and every graph
in KB(C) is hamiltonian. We also found some forbidden subgraphs and partial
characterization.

On the other hand, we studied the inverse problem, K−1
B (C): given a graph G

we want to know if KB(G) belongs to C.
We proved that, for every C that contains the complete graphs and is C4-free,

the problem of determining if KB(G) is in C is in co-NP-complete.
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Maximum Clique via MaxSat and Back Again

Alexandre Prusch Züge∗,† Renato Carmo‡

Departamento de Informática da Universidade Federal do Paraná

Among the exact algorithms proposed for the Maximum Clique Problem in the
literature, branch and bound schemes stand out as the best performing from an
experimental point of view. Moreover, authors seem to agree in that the best choice
for the bounding function in such algorithms is the use of (an upper bound on)
the chromatic number of the graph. Indeed, it is remarkable that the main recent
advances on the subject essentially dwell on the same algorithm, varying only in the
proposed way to color the graph.

Such is the focus also in [1], where it is proposed the idea of refining the bound
given by coloring via a rather unusual reduction to the Maximum Satisfiability Problem
(MaxSat), which is the problem of maximizing the number of satisfied clauses in
a given boolean formula. The authors report the experimental performance of their
implementation and, based on them, conclude that the approach “is a very promising
research direction”.

Schematically their idea may be described as follows. Given a graph G and a
coloring of G, an instance of MaxSat is computed. This instance is then given as
input to a certain heuristic algorithm for MaxSat. If this heuristic is able to output
an upper bound on the number of satisfiable clauses of the MaxSat instance, this
bound is then translated into an upper bound for the size of the maximum clique
in G, and this bound is lower than the number of colors in the original coloring.

While the reduction proposed in [1] is not particularly complicated or unnatural,
the fact that the algorithm is described in terms of propositional calculus obscures
its graph theoretic meaning. We show that, although the main novelty presented in
[1] is the use of “MaxSat technology”, their idea can be expressed in pure graph
theoretical terms, and that such description has several advantages. It leads to an
algorithm which is shorter and simpler to describe and resorts only to usual graph
theoretic concepts. Moreover, the resulting algorithm is a natural one in the sense
that no artificial constructions or formulations are needed when the heuristic for
MaxSat is interpreted back in graph theoretic terms. As such, the idea can be
used as a starting point for further refinements and, last but not least, the simplifi-
cation of the algorithm simplifies its analysis.
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Clique and neighborhood characterizations of
strongly chordal graphs
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Maximal cliques and closed neighborhoods sometime play almost interchange-
able roles in graph theory. For instance, interchanging them makes two existing
characterizations of chordal graphs into two new characterizations. More intrigu-
ingly, these characterizations of chordal graphs can be naturally strengthened to
new characterizations of strongly chordal graphs.
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AVD-total-colouring of some families of
snarks∗

At́ılio G. Luiz† C. N. Campos‡ C. P. de Mello§

University of Campinas (UNICAMP), São Paulo, Brazil

Let G := (V (G), E(G)) be a simple graph. A k-total-colouring φ of G is a
mapping φ:V (G) ∪ E(G) → {1, 2, . . . , k} such that any pair of adjacent vertices
or adjacent edges receive distinct colours, and any pair of incident elements receive
distinct colours. Let C(u) = {φ(u)} ∪ {φ(uv):uv ∈ E(G)} be the set of colours
that occur in a vertex u ∈ V (G). If C(u) 6= C(v) for any pair of adjacent vertices
u, v ∈ V (G), then φ is an adjacent-vertex-distinguishing-total-colouring (AVD-total-
colouring) of G. The adjacent-vertex-distinguishing-total-chromatic number (AVD-
total-chromatic number) of G, denoted χ′′

a(G), is the smallest number of colours for
which G admits an AVD-total-colouring.

In 2005, Zhang et al. [3] introduced AVD-total-colourings and conjectured that
any simple graph G admits an AVD-total-colouring with at most ∆(G) + 3 colours.
Although this conjecture remains open for arbitrary graphs, it has been proven for
some families of graphs, such as simple graphs with maximum degree three [1, 2].
Later, J. Hulgan [2] conjectured that any simple graph G with ∆(G) = 3 admits an
AVD-total-colouring with at most five colours.

An important class of 3-regular graphs is the class of snarks. Snarks are 3-
regular graphs with chromatic index equal to four, and that do not have a cut
edge. These graphs had their origin in the search for counterexamples to the Four
Colour Theorem. In this work, we prove that the following families of snarks admit
an AVD-total-colouring with exactly five colours: flower-snarks, Goldberg snarks,
Blanuša generalized snarks and a family of Loupekine snarks. These results reinforce
Hulgan’s conjecture.
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The Total Coloring of the 3rd and 4th
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A total coloring of a graph G is an assignment of colors to the edges and vertices
of G, so that adjacent or incident elements have different colors. The total chromatic
number of a graph G, denoted χ′′(G), is the least number of colors for which G has a
total coloring. It is easy to see that χ′′(G) ≥ ∆(G)+1 for every simple graph G with
maximum degree ∆(G). To decide whether χ′′(G) equals ∆(G) + 1 is NP-complete.
Even when the problem is restricted to determining the total chromatic number of
graphs in some particular class, as bipartite k-regular graphs for each fixed k ≥ 3,
it is NP-hard. The famous Total Coloring Conjecture (TCC) states that a graph G
with maximum degree ∆(G) has χ′′(G) ≤ ∆(G) + 2. When a simple graph G has
χ′′(G) = ∆(G) + 1, it is called type 1 and when χ′′(G) = ∆(G) + 2, it is called type
2.

The k-th power of G, denoted by Gk, is the graph with the same vertex set as G
and where two vertex are adjacent if, and only if, their distance in G is at most k.
The k-th power of a cycle with n vertices is denoted by Ck

n. When k equals 1, C1
n

is isomorphic to Cn and it is known that Cn is type 1 if n ≡ 0 (mod 3), and type
2 otherwise. If Ck

n has k ≥ bn
2
c, then Ck

n is isomorphic to the complete graph Kn,
which is type 1 when n is odd, and type 2 when n is even. Campos and de Mello
showed that χ′′(Ck

n) ≤ ∆(Ck
n) + 2, satisfying the TCC. They conjectured that the

Ck
n, 2 ≤ k < bn

2
c, is type 2 when k > n

3
− 1 and n is odd; and type 1 otherwise.

They also proved that this conjecture is true for C2
n.

In this work, we show that the Conjecture of Campos and de Mello is true for
C3

n and C4
n. For each 0 ≤ r ≤ 2k and each k ∈ {3, 4}, we present a total coloring

for the minimum type 1 power of cycle Ck
n with r ≡ n (mod 2k + 1). We show

how to use this coloring to polinomially construct an optimal total coloring for any
other power of cycle with the same k and with n′ vertices, when n′ > n and n′ ≡ r
(mod 2k + 1). In order to achive this goal, we use special total colorings for powers
of paths P k

a with a ≥ 2k + 1. Considering the general case, if a total coloring with
2k + 1 colors is given to a Ck

n, and a special total coloring is given to the power of
path P k

2k+1, then the same technique can be applied to obtain a total coloring for
any other power of cycle Ck

n′ , with n′ > n and n′ ≡ n (mod 2k + 1).
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It has been a challenging problem to determine the smallest graph class where
a problem is proved to be hard. In the literature, this has been pointed out to be
very important in order to establish the real nature of a combinatorial problem.

An oriented k-coloring of an oriented graph ~G = (V, ~E) is a partition of V into
k subsets such that there are no two adjacent vertices belonging to the same subset,
and all the arcs between a pair of subsets have the same orientation. The decision
problem k-oriented chromatic number (ocnk) consists of an oriented graph
~G and an integer k > 0, plus the question if there exists an oriented k-coloring of
~G. By its strong appeal, many papers have presented NP-completeness proofs for
ocnk. We noticed that it was not known the complexity status of ocnk when the
input graph ~G satisfies that the underlying graph G is cubic.

In this work we prove using [1] that ocn4 is NP-complete for an oriented graph
~G such that G is at same time planar and cubic.

Our result defines a P versus NP-complete dichotomy with respect to the degree
of G: ocnk is polynomial if ∆ < 3 and NP-complete if G is cubic and ∆ ≥ 3 [1],
since it is known that ocn3 is in P [2], and that ocnk is in P when the underlying
graph has ∆ ≤ 2.
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A characterization of PM-compact bipartite
and near-bipartite graphs

Cláudio Lucchesi

Universidade Federal do Mato Grosso do Sul, Brazil

The perfect matching polytope of a graph G is the convex hull of the incidence
vectors of all perfect matchings in G. In this talk, we characterize bipartite and
near-bipartite graphs whose perfect matching polytopes have diameter 1 (it is a
clique).
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Total coloring of snarks is NP-complete

Vińıcius F. dos Santos1∗ Diana Sasaki2†
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A k-total-coloring of G is an assignment of k colors to the edges and vertices of
G, so that adjacent or incident elements have different colors. The total chromatic
number of G, denoted by χ′′(G), is the least k for which G has a k-total-coloring.
The well-known Total Coloring Conjecture states that ∆ + 1 ≤ χ′′ ≤ ∆ + 2 and
has been proved for cubic graphs [3]. Hence, the total chromatic number of a cubic
graph is either 4, in which case the graph is called Type 1, or 5, in which case it
is called Type 2. Snarks are bridgeless cubic graphs that do not allow a 3-edge-
coloring, and their importance arises at least in part from the fact that several
well-known conjectures would have snarks as minimal counterexamples. Motivated
by the question proposed by Cavicchioli et al. [1] of finding, if one exists, the smallest
Type 2 snark of girth at least 5, we investigate the total coloring of snarks.

It is shown in [4] that the problem of determining if a cubic bipartite graph
has a 4-total-coloring is NP-complete. We prove that, similarly, the problem of
determining if a snark is Type 1 is NP-complete. Our proof resembles the one in [4]
but requires a slightly different construction. The proof is by reduction from the
NP-complete problem of determining if a 4-regular graph has a 4-edge-coloring [2].
More specifically, given a 4-regular graph G, we show that it is possible to construct
a snark GP by replacing each vertex of G by a certain graph P which has special
coloring properties. This construction can be done in polynomial time in the order of
G, and we prove that G has a 4-edge-coloring if and only if GP has a 4-total-coloring.
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We consider finite, simple, and undirected graphs and use standard terminology and nota-
tion. Let D be a set of vertices of some graph G. The set D is a dominating set of G if every
vertex of G that does not belong to D, has a neighbour in D. The set D is an independent
dominating set of G if it is a dominating and an independent set of G. The set D is a connected
dominating set of G if it is dominating and the graph G[D] is connected. Finally, the set D is a
paired dominating set of G if it is dominating and the graph G[D] has a perfect matching. The
domination number γ(G), the independent domination number ι(G), the connected domination
number γc(G), and the paired domination number γp(G) of G are the minimum cardinalities of
a dominating, an independence dominating, a connected dominating and a paired dominating
set of G, respectively. These definitions immediately imply

γ(G) ≤ ι(G) (1)

γ(G) ≤ γc(G) (2)

γ(G) ≤ γp(G) (3)

for every graph G where the parameters are well defined.
Very little is known about extremal graphs, that is, the graphs that satisfy one of these in-
equalities with equality. So it is usual to work with a less complex class. In that sense, V.E.
Zverovich, 1995, I.E. Zverovich, 2003, and J.D. Alvarado et al., 2014, studied classes of graphs
defined by requiring equality in (1), (2), or (3), respectively, for all induced subgraphs (where
the parameters are well defined). Their results are characterizations of these classes in terms
of their minimal forbidden induced subgraphs.
In this work, we prove the following hardness results, which suggest that the extremal graphs
for some of the above inequalities do most likely not have a simple description.

Theorem 1 It is NP-hard to decide, for a given graph G, whether γ(G) = ι(G).

Theorem 2 It is NP-hard to decide, for a given graph G, whether γ(G) = γc(G).

Theorem 3 It is NP-hard to decide, for a given graph G, whether γ(G) = γp(G).
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Uma aliança ofensiva em um grafo G é um conjunto A de vértices com a pro-
priedade que todos os vértices não pertencentes a A tem um ou mais vizinhos em A
com relação aos que estão fora de A. Este e outros conceitos sobre alianças foram
apresentados inicialmente por Hedetniemi, Hedetniemi e Kristiansen em 2004, [1].
A complexidade computacional e aplicações para a defesa nacional, redes de com-
putadores, distribuição computacional e redes sociais são exemplos que motivam os
estudos sobre alianças em grafos. Uma aliança ofensiva A, é global se for também
um conjunto dominante de G, ou seja, se todos os vértices de G e não pertecentes
a A tem pelo menos um vizinho em A. O número da aliança ofensiva global de G,
γo(G), é a cardinalidade mínima de uma aliança ofensiva global de G. Denotamos o
produto lexicográfico de dois grafos G e H por G ◦ H. Yero e Rodriguez-Velázquez,
em [2] apresentaram alguns resultados para aliança ofensiva global de algumas fa-
mílias de produto Cartesiano de grafos. Neste trabalho nós estabelecemos alguns
limites inferiores para produto lexicográfico de caminhos, ciclos e grafos estrela, em
particular encontramos os valores para γo(Pn ◦ Cm), γo(Cn ◦ Cm), γo(Pn ◦ Sm) e
γo(Cn ◦ Sm), onde n, m ≥ 3.
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The Firefighter game was introduced by Hartnell at the 25th Manitoba Confer-
ence on Combinatorial and Computing in Winnipeg (1995). It is a model contain-
ment of the spreading of an undesired property within a network, like an infecting
disease. Let (G, r) be a pair, where G is simple, undirected, and connected rooted
graph with root r ∈ V (G). The game proceeds in rounds, and at round 0, a fire
breaks out at vertex r. In subsequence rounds, the firefighter defends at most one
vertex, which is not burned and not defended in previous rounds; and so, the fire
spreads on all vertices of G that are neither burned nor defended, and have a burned
neighbour. Once burned or defended, a vertex remains so for the rest of the game.
The process ends when the fire can no further spread. The objective is to choose a se-
quence of vertices (strategy) for the firefighter to protect, so as to save the maximum
number of vertices in the graph.

firefighter problem:
Instance: A rooted graph (G, r) and an integer k ≥ 1.

Question: If the fire breaks out at r, is there a strategy under which at
most k vertices burn?

Finbow et al. (2007) showed that the firefighter problem is NP-complete
for trees of maximum degree three, and presented a tractable case on a graph of
maximum degree three when the fire breaks out at vertex of degree two. This implies
that the firefighter problem is NP-complete for any graph of maximum degree
three such that the fire breaks out in a vertex of degree three. Hence, a natural
question arises: what is the structure of graphs with degree at most three such that
the firefighter problem has polynomial complexity?

We studied the firefighter problem on snarks. The definition of snarks
was motivated by the search of counter-examples to the graph four-color conjecture.
The importance of these graphs remains so far from the fact that several relevant
conjectures stated in the past would have snarks as minimal counter-examples. The
surviving rate ρ(G) of a graph G with order n is defined to be the average proportion
of vertices that can be saved when a fire randomly breaks out at a vertex of G. In
this work,we show a lower bound for the surviving rate for Flower, Goldberg, and
Blanusa snarks.
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Timber is a two player game introduced by Nowakowski et al. in 2013. The
game timber is played on a directed graph D = (V, ~E), with a domino on each edge.
The player chooses a domino on some edge, say ~xy and topples it in the direction of
y. (This is the only time that the direction of the edge is important). This domino
topples the dominoes on the edges incident to y, independent of whether the edge
is directed into or away from y, and the process of toppling the dominoes continues
until no more dominoes topple. The toppled dominoes and the corresponding edges
are removed from the digraph.

Let G = (V,E) be a graph. A configuration D = (V, ~E) is an orientation of G.
The orientation of the arc represents the available movement of the domino piece.
When we play with piece ~xy, each adjacent path that has y as one of its extreme
vertices will be excluded from the digraph, regardless of the orientation of its edges.
All other vertices remain in the digraph.

A P -position is a configuration D in which the second player wins, independent
of what the first player plays. The number of P -positions of a path is known. Our
goal is to contribute to the open problem of determining the number of P -positions of
a tree by studying the case of a caterpillar. A caterpillar cat(k1, k2, . . . , ks) is a tree
which is obtained from a central path v1, v2, v3, ..., vs (called spine) by joining vi to ki
new leaf vertices, i = 1, . . . , s. Thus, the number of vertices is n = s+k1+k2+. . .+ks.
Using this definition, a caterpillar 1 is a cat(1, . . . , 1), i.e., ki = 1, for all i = 1, . . . , s;
and a double broom is a cat(k1, 0, . . . , 0, ks), i.e., ki = 0 for i = 2, . . . , s − 1. The
outdegree of a vertex v is the number of arcs with v as their initial vertex. In
this work, we show structural properties to determine whether a configuration D
associated to a caterpillar is a P -position. More specifically, we show:

- Every digraph associated to a caterpillar that has a leaf with outdegree 1 and
every digraph associated to a caterpillar 1 have no associated P -position.

- The number of P -positions of cat(k1, k2, . . . , ks) such that each ki is even,
i = 1, . . . , s, is equal to the number of P -positions of a path with s vertices.

- Let cat(k1, 0, . . . , 0, ks) be a double broom. If k1 and ks are even and odd,
respectively, then the number of P -positions is equal to the number of P -positions
of a path with s + 1 vertices; and if k1 and ks are both odd, then the number of
P -positions is equal to the number of P -positions of a path with s + 2 vertices.

∗Partially supported by CAPES, FAPERJ and CNPq.
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O problema da partição em cliques dominantes∗

H. V. Sousa C. N. Campos

Instituto de Computação, UNICAMP, Campinas, SP, Brasil†

Dado um grafo G = (V (G), E(G)), um conjunto S ⊆ V (G) é denominado um
conjunto dominante de G, se para todo vértice v ∈ V (G), ou v é um elemento de
S, ou v é adjacente a um elemento de S. O número de dominação de G, γ(G), é
a cardinalidade de um menor conjunto dominante de G. O problema do conjunto
dominante mı́nimo consiste em determinar γ(G) para um grafo G arbitrário e foi
demonstrado ser NP-dif́ıcil em 1979, por M. Garey e D. Johnson. Este é um pro-
blema de grande importância teórica. Muitas aplicações podem ser modeladas como
problemas de conjuntos dominantes e algumas delas levaram à definição de variantes
do problema original. Uma destas variantes, consiste em adicionar a restrição de que
o conjunto dominante seja uma clique, definindo desta forma uma clique dominante.

Em 1977, E. J. Cockayne e S. T. Hedetniemi[1] introduziram uma nova variante
do problema original que tem atráıdo a atenção de vários pesquisadores. Uma
partição em conjuntos dominantes de um grafo G é uma partição de V (G) tal
que cada uma de suas partes seja um conjunto dominante de G. O problema da
partição em conjuntos dominantes consiste em determinar a cardinalidade máxima
de uma tal partição. Uma extensão natural deste problema consiste em considerar
partições em conjuntos dominantes de G com restrições adicionais. Em particular,
o problema da partição em cliques dominantes consiste em determinar, caso exista,
uma partição em conjuntos dominantes de G, de cardinalidade máxima, tal que cada
uma de suas partes seja também uma clique. O número clique dominativo é definido
como dcl(G) := max{|P| : P é partição em cliques dominantes de G}.

Este trabalho aborda o problema da partição em cliques dominantes para algu-
mas classes de grafos. Em particular, foram caracterizados os grafos bipartidos e
as potências de ciclos que possuem partição em cliques dominantes, determinando
os seus números clique dominativos, quando existem. Ainda neste trabalho, foram
consideradas as operações de produto cartesiano e produto direto de grafos. Para o
primeiro produto, foi demonstrado que apenas os grafos G obtidos pelo produto car-
tesiano de dois grafos completos Kp e Kq possuem partição em cliques dominantes
e que dcl(G) = max{p, q}. Já para o segundo, foi demonstrado que o número clique
dominativo do produto direto de dois grafos completos Kp e Kq é ⌊pq

3
⌋, p, q ≥ 3.

Referências
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Sobre posets representables mediante
contención de caminos en un árbol

L. Alcón 2 N. Gudiño 1,2 M. Gutierrez 1,2

1 Conicet
2 Dto. de Matemática, FCE-UNLP.

Un conjunto parcialmente ordenado o poset P es un par (X,P ) donde X es un
conjunto no vaćıo y P es una relación binaria reflexiva, antisimétrica y transitiva
definida en X; se escribe x ≤ y cuando (x, y) ∈ P . Si x ∈ X, el conjunto descendente
de x es el conjunto D(x) = {y ∈ X : y < x en P}.

Dado un poset P = (X,P ) se dice que una familia de conjuntos F = (Fi)i∈I es
un modelo por contención de P si existe una función f : I → X biyectiva tal que
para todo i y j en I se verifica que Fi ⊆ Fj ↔ f(i) ≤ f(j). Si los elementos de
la familia F son intervalos de la recta real decimos que P es un poset CI, o bien
que P admite un modelo por contención de intervalos [1]. Una generalización de los
posets CI son los posets CPT definidos como aquellos que admiten un modelo por
contención de caminos en un árbol [2]. Dado un poset P = (X,P ) se llama grafo de
comparabilidad de P al grafo simple GP = (X,E) siendo E = {{x, y} : x < y}.

En este trabajo definimos a los posets 2-tree como aquellos posets cuyos grafos
de comparabilidad son grafos 2-tree [3], damos una caracterización recursiva para
esta clase de posets y demostramos que un poset 2-tree P es CPT si y solo si para
cada maximal m de P el subposet inducido en P por D(m) es un poset CI.
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Kneser Graphs are Close to Being Hamiltonian∗Felipe de Campos Mesquita† Letíia Rodrigues Bueno‡Rodrigo de Alenar Hausen§Universidade Federal do ABC (UFABC), 09210-580 Santo André, SP, BrazilThe verties of the Kneser graph K(n, k) are the k-subsets of {1, 2, . . . , n} andtwo verties are adjaent if the orresponding k-subsets are disjoint. For n = 2k+1,the Kneser graph K(2k + 1, k) is alled the odd graph and it is denoted by Ok. Thebipartite double graph of the Kneser graph K(n, k) is known as the bipartite Knesergraph B(n, k), whose verties are the k-subsets, and (n − k)-subsets of {1, 2, . . . , n}and the edges represent the inlusion between two suh subsets. The graphs K(n, k)and B(n, k) are vertex-transitive and, therefore, they an provide a ounterexampleor more evidene to a long-standing onjeture due to Lovász whih laims thatevery onneted undireted vertex-transitive graph has a hamiltonian path.It is well-known that the deision problem related to the hamiltonian yle prob-lem is NP-Complete. Thus, one reent trend is the searh for related strutures. Inthis aspet, having a hamiltonian prism in a graph is an interesting relaxation ofbeing hamiltonian making suh a graph �lose� to being hamiltonian [3℄. The prismover a graph G is the Cartesian produt G�K2 of G with the omplete graph on twoverties. Previously, the prism over B(2k + 1, k) was proved to be hamiltonian [2℄.Later, the ounterpart of this result was proved for Ok if k is even [1℄. We show thatthe prism over K(n, k) and B(n, k) is hamiltonian for n > 2k.Another trend is the searh for long yles. For K(n, k), the best lower boundurrently known states the length of the longest yle in Ok is √3|V (Ok)|, whih isless than 3% for O10, and asymptotially approahes zero as k inreases. We improvethis lower bound for Ok by providing a yle with at least .625|V (Ok)| verties.Referenes[1℄ L. R. Bueno and P. Horák. On hamiltonian yles in the prism over the oddgraphs. Journal of Graph Theory, 68(3):177�188, 2011.[2℄ P. Horák, T. Kaiser, M. Rosenfeld, and Z. Ryjá£ek. The prism over the middle-levels graph is hamiltonian. Order, 22(1):73�81, 2005.[3℄ T. Kaiser, Z. Ryjá£ek, D. Král, M. Rosenfeld, and H.-J. Voss. Hamilton ylesin prisms. Journal of Graph Theory, 56:249�269, 2007.
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Hamiltonian Cyles in 4-Conneted 4-RegularClaw-free Graphs∗Jorge L.B. Puohuaranga1† Letíia R. Bueno1‡Daniel M. Martin1§ Simone Dantas2¶1 Universidade Federal do ABC (UFABC), 09210-580 Santo André, SP, Brazil2 Universidade Federal Fluminense (UFF), 24020-140 Niterói, RJ, BrazilSine the deision problem of the hamiltonian yle problem is NP-Complete,one reent trend has been to searh for long yles or related strutures. In thisaspet, a hamiltonian prism is an interesting relaxation of a hamiltonian yle [2℄.The prism over a graph G is the Cartesian produt G�K2 of G with the ompletegraph on two verties. A prism an be seen as the graph obtained by joining theorresponding verties of two opies of G. A graph G is prism-hamiltonian if itsprism has a hamiltonian yle.Plummer [3℄ has onjetured that every 4-onneted 4-regular law-free graph ishamiltonian and this onjeture remains open [1℄. Also, the author has shown that
4-onneted 4-regular law-free graphs fall into three lasses G0, G1 and G2, of whihonly G1 is known to be hamiltonian. In our work, we prove that G0 is hamiltonianand that G2 is prism-hamiltonian, also orroborating to a onjeture that the prismover every 4-onneted 4-regular graph is hamiltonian [2℄.Given a graph G, let G1 = G�K2 and Gq = Gq−1�K2, for q > 1. We show that,for every onneted graph G, it holds that Gq is hamiltonian for all q ≥ ⌈log2∆(G)⌉,where ∆(G) is the maximum degree of G. Also, we show that this proof is equivalentto prove that G�Qn is prism-hamiltonian for some value of n where Qn is the n-ubegraph.Referenes[1℄ H. J. Broersma, Zdenek Ryjáek, and Petr Vrána. How many onjetures anyou stand? a survey. Graphs and Combinatoris, 28(1):57�75, 2012.[2℄ T. Kaiser, Z. Ryjá£ek, D. Král, M. Rosenfeld, and H.-J. Voss. Hamilton ylesin prisms. Journal of Graph Theory, 56:249�269, 2007.[3℄ M. D. Plummer. A note on Hamilton yles in law-free graphs. CongressusNumerantium, 96:113�122, 1993.

∗Researh partially supported by Brazilian ageny CNPq.
†jbarbierip�uni.pe
‡letiia.bueno�ufab.edu.br
§daniel.martin�ufab.edu.br
¶sdantas�im.u�.br

VI Latin American Workshop on Cliques in Graphs, Pirenopólis, Brazil, November 9 – 12, 2014.

43



Laplacian energy of special families of
threshold graphs

R.R. Del-Vecchio
1,∗,† C.T.M. Vinagre1,‡ G.B. Pereira

1,§,†

1 Instituto de Matemática e Estatística - UFF - Niterói - RJ - Brasil.

The concept of Laplacian energy of a graph G has been de�ned ([1], [2]) in 2006
as the sum of the absolute values of the di�erences between the eigenvalues of the
Laplacian matrix and the average degree of the vertices of G. That is, if G is a
connected graph with n vertices and m edges, the Laplacian energy of G is then

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ ,

where µ1, µ2, · · · , µn is the sequence of Laplacian eigenvalues of G.
A threshold graph is a graph free of P4, C4 and 2K2.
In [3], imposing some restrictions on the spectra of a threshold graph, its Lapla-

cian energy is computed. It is also proved that the pineapple with clique number
1 + b2n

3
c has largest Laplacian energy among all the graphs satisfying those condi-

tions. In this work, we construct two large families of threshold graphs, �xing the
number of vertices and the clique number, that satisfy those restrictions. In this way,
we prove that the above pineapple is an extremal graph for these families, respect-
ing the Laplacian energy. Thereby, we corroborate a conjecture established in [4],
indicating that this pineapple has maximum Laplacian energy among all connected
graphs of the same order.

Furthermore, we exhibit pairs of such graphs with the same Laplacian energy
and di�erent Laplacian spectra, known as Laplacian equienergetic graphs.
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Adjacent strong edge-coloring of
split-indifference graphs∗

Alóısio de Menezes Vilas-Bôas† Célia Picinin de Mello ‡

Institute of Computing - University of Campinas

Let G be a simple graph. An adjacent strong edge-coloring of G is a proper edge-
coloring of G such that for each pair of adjacent vertices u, v of G, the set of colors
assigned to the edges incident with u differs from the set of colors assigned to the
edges incident with v. The adjacent strong chromatic index, denoted χ′

a(G), of G is
the minimum number of colors required to produce an adjacent strong edge-coloring
for G. It is clear that χ′

a(G) ≥ χ′(G), since every adjacent strong edge-coloring is an
edge-coloring. It was proved that if the degrees of adjacent vertices are distinct, then
χ′
a(G) = ∆(G), where ∆(G) is the maximum degree of G. However, if G contains at

least two adjacent vertices with maximum degree, then χ′
a(G) ≥ ∆(G)+1 [1]. A total

coloring of G assigns a color to each vertex and to each edge so that colored elements
have different colors when they are adjacent or incident. The total chromatic number
of G, denoted χT (G), is the minimum number of colors in a total coloring of G. For
regular graphs G, χ′

a(G) and χT (G) are strongly related. Indeed, if G is a regular
graph with at least three vertices, then χ′

a(G) = χT (G) when χT (G) = ∆(G)+1 [2].
In the seminal article on the adjacent strong edge-coloring, Z. Zhang et al. con-

jectured that every simple connected graph G with at least three vertices and G 6∼= C5

(a 5-cycle) has χ′
a(G) ≤ ∆(G) + 2 [1]. This conjecture is open for arbitrary graphs,

but it holds for some classes of graphs [1, 2].
In this work, we focus our attention on graphs that are both split and indifference,

a set that contains non-regular graphs. We prove the conjecture for split-indifference
graphs. Moreover, we determine the adjacent strong chromatic index for split-
indifference graphs with a universal vertex. For a split-indifference graph G without
universal vertices, we give conditions for its adjacent strong chromatic index to be
∆(G) + 1 and we conjecture that χ′

a(G) = ∆(G) + 2, otherwise.
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Maximal independent sets in cylindrical grid
graphs

Rommel M. Barbosa∗ Márcia R. Cappelle†‡

INF, Universidade Federal de Goiás, Brazil

Finbow, Hartnell, and Whitehead [1] define, for every t ∈ N, the set Mt as the
set of graphs that have maximal independent sets of exactly t different sizes. The
cylindrical grid graph is formed by the Cartesian product of the graph Pn, the path
of length n, n ≥ 2 and the graph Cm, the cycle of length m, m ≥ 3, denoted by
Pn 2 Cm. Nandi, Parui, and Adhikari [2] propose methods to find the domination
number in cylindrical grid graphs Pn 2 Cm with m ≥ 3 and n ∈ {2, 3, 4}, and
presented bounds on the domination numbers when n = 5 and m ≥ 3. We present
a method to find different sizes of maximal independent sets in a cylindrical grid
graph and a lower bound for t, such that cylindrical grids belong to Mt.
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Editing to Cliques: A Survey of FPT Results
and Recent Applications in Analyzing Large

Datasets

Frances Rosamond

Charles Darwin University, Australia

The talk will survey the parameterized complexity of CLUSTER EDIT, the
problem of combinatorially editing a graph so that the result is a graph consisting
of disjoint cliques. The problem comes in several flavours, including: (1) where the
input is an ordinary undirected graph, and the information is certain about which
pairs of vertices are related (edge) and which are not (non-edge), and (2) where the
input is uncertain (edge, non-edge, or “maybe”). The latter has important applica-
tions in machine learning. The talk will also survey some recent implementations
of FPT algorithms for CLUSTER EDIT and results analysing large data-sets in
Ecology and Medicine.
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On the generalized Helly property of
hypergraphs and maximal cliques and bicliques∗

Mitre C. Dourado1 Luciano N. Grippo2 Mart́ın D. Safe2

1 IM, NCE and COPPE, Universidad Federal do Rio de Janeiro, Brazil
2 Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina

A family of sets is (p, q)-intersecting if every nonempty subfamily of p or fewer
edges has at least q elements in its total intersection. A family of sets has the (p, q)-
Helly property if every nonempty (p, q)-intersecting subfamily has total intersection
of cardinality at least q. The (2, 1)-Helly property is the usual Helly property. A hy-
pergraph is (p, q)-Helly if its edge family has the (p, q)-Helly property and hereditary
(p, q)-Helly if each of its subhypergraphs has the (p, q)-Helly property. A graph is
(p, q)-clique-Helly if the family of its maximal cliques has the (p, q)-Helly property
and hereditary (p, q)-clique-Helly if each of its induced subgraphs is (p, q)-clique-
Helly. The classes of (p, q)-biclique-Helly and hereditary (p, q)-biclique-Helly graphs
are defined analogously, where a biclique is any set of vertices inducing a (possibly
edgeless) complete bipartite graph. It is important to mention that our classes of
(2, 1)-biclique-Helly graphs and hereditary (2, 1)-biclique-Helly graphs are different
from the classes of ‘biclique-Helly’ and ‘hereditary biclique-Helly’ graphs defined
by Groshaus and Szwarcfiter (Graphs Combin. 23 (2007) 633–645; Discrete Math.
Theor. Comput. Sci. 10 (2008) 71–78) precisely because they do not regard stable
sets as bicliques.

In this work, we prove several characterizations of hereditary (p, q)-Helly hy-
pergraphs, including one by minimal forbidden partial subhypergraphs. On the
algorithmic side, we give an improved time bound for the recognition of (p, q)-Helly
hypergraphs and show that the recognition of hereditary (p, q)-Helly hypergraphs
can be solved in polynomial time if p is fixed but it is co-NP-complete if p is part of
the input. In addition, we generalize the characterization of p-clique-Helly graphs,
in terms of expansions, to (p, q)-clique-Helly graphs and give different characteri-
zations of hereditary (p, q)-clique-Helly graphs, including one by forbidden induced
subgraphs. We give an improvement on the time bound for the recognition of (p, q)-
clique-Helly graphs and prove that the recognition problem of hereditary (p, q)-
clique-Helly graphs is polynomial-time solvable for p and q fixed but NP-hard if
p or q is part of the input. Finally, we give different characterizations, recogni-
tion algorithms, and hardness results for (p, q)-biclique-Helly graphs and hereditary
(p, q)-biclique-Helly graphs, analogous to those for (p, q)-clique-Helly and hereditary
(p, q)-clique-Helly graphs.

∗M.C. Dourado was partially supported by CNPq and FAPERJ. L.N. Grippo and M.D. Safe
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The Clique Problem parameterized by the
degeneracy of a graph

Jonilso Novacoski∗ Renato Carmo†

Universidade Federal do Paraná

We show that the maximum clique of a graph G can be found in time
O((n − d)f(d)) where n is the number of vertices, d is the degeneracy of G and
f(d) is the time for computing the maximum clique of a d–vertex subgraph of G.
In other words, we show that the parameterization of the clique problem in terms
of the degeneracy of a graph results in a fixed parameter tractable problem.

The degeneracy of a (simple) graph G is the minimum integer d such that every
subgraph of G has a vertex of degree at most d. The degeneracy of a graph can be
thought as a “measure of the sparcity” of the graph and can be computed in time
O(m + n) where m and n are the number of edges and vertices of the graph.

Our result is a simple extension of a result found in [1] where the authors show
how to modify Bron–Kerbosch algorithm in order to guarantee its execution in time
O(nd3d/3) for a n–vertex graph G of degeneracy d.

We also show that some of the best performing algorithms reported in the lit-
erature for the maximum clique problem can be easily modified (or, in some cases,
need no modification at all) in order to take advantage of this result.
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Vizinhança Mı́nima no Hipercubo

Moysés da Silva Sampaio Júnior

Paulo Eustáquio Duarte Pinto Luerbio Faria∗

Universidade do Estado do Rio de Janeiro

Uma árvore Hamming-Huffman [1] é uma estrutura que une compressão de da-
dos com detecção de erros. Esta árvore é uma extensão das árvores de Huffman
onde cada nó de codificação possui um conjunto de nós, denominados nós de erros,
responsáveis pela detecção de erros desta codificação. Cada uma dessas folhas de
erro corresponde a uma codificação que possui distância Hamming 1 para uma folha
de śımbolo, assim, proibindo a utilização do prefixo que ela representa e garantindo
a detecção de erros de 1 bit na mensagem compactada.

Na criação de uma árvore de Huffman [3] o principal problema a ser resolvido é
a associação dos śımbolos com as codificações mais adequadas às suas frequências,
de acordo com o critério utilizado em um código de tamanho variável. Quando se
trabalha com árvores Hamming Huffman é necessário considerar uma caracteŕıstica
adicional, a quantidade de folhas de erros produzidas pelas folhas de śımbolo. O
custo da árvore Hamming Huffman parece estar relacionado com a quantidade de
nós de erros produzidos no processo de construção desta árvore. Minimizar esta
quantidade para um conjunto de codificações de um dado ńıvel da árvore se traduz
em achar a vizinhança mı́nima de um conjunto de nós em Qb.

Neste trabalho, abordamos este problema utilizando [2] o grafo Q2b. Este grafo
é obtido a partir de Qb através da seguinte operação: Q2

b − Qb, ou seja, em Q2b dois
nós compartilham uma aresta se a distância Hamming das codificações as quais eles
representam for igual a dois. Desta maneira, o grafo Q2b possui dois componentes,
um composto por codificações pares e outro por codificações ı́mpares. Para a solução
deste problema estamos interessados em particular nas cliques de Q2b. Ao longo do
trabalho definimos diversas propriedades para estas cliques, assim como sua relação
com a vizinhança em Qb.
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Enumeration of chordless cycles

Diane Castonguay Elisângela Silva Dias∗

Walid Abdala Rfaei Jradi † Humberto Longo
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Instituto de Informática – UFG

Enumeration is a fundamental task in computer science and many algorithms
have been proposed for enumerating graph structures such as cycles, circuits, paths,
trees and cliques. Due to the problem’s instance sizes – which can be exponentially
large – these kind of tasks are usually hard to deal with, since even small graph
can have a huge number of such structures. However, in many practical problems
enumeration is necessary. For example, the cycle enumeration is useful for analy-
sis of Web and social networks and the number of cycles can be used to identify
connectivity patterns in a network.

A structure that have received special attention is the chordless cycle, that is
a cycle which is an induced subgraph. Since the vertex set of such cycle does not
include the vertex set of any other cycle, it is considered minimal. Therefore, chord-
less cycles are good representatives of cyclic structures. Chordless cycles appear in
connectivity structures of networks as a whole, ecological networks, such as food
webs and in structure-property relationships in some chemical compound.

We developed two new algorithms, a sequential [1] and a parallel [2]. The se-
quential version was implemented in C++. The parallel version was implemented
in OpenCL. In this talk, we present an algorithm to enumerate all chordless cycles
of a given graph G, with an O(n · P ) complexity time, where P is the number of
chordless paths in G and n is the number of vertices of G. The core idea of our
algorithm also uses a vertex ordering scheme, in which any arbitrary cycle can be
described in a unique way. With this in hand, we generate an initial set of vertex
triplets and use a depth-first-search strategy to find all the chordless cycles.
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Um algoritmo certificador para um problema Π exibe, para uma instância x de
Π, uma resposta y e uma testemunha w, possibilitando a verificação da corretude da
resposta por meio de um algoritmo verificador, que recebe x, y e w como entrada.
Algoritmos certificadores são em muitos casos prefeŕıveis a algoritmos tradicionais
(não-certificadores) porque permitem que acatemos as respostas obtidas como ver-
dadeiras sem que precisemos confiar cegamente na implementação dos algoritmos
que as encontraram, garantindo que as respostas não foram comprometidas por
falhas na implementação.

Na literatura sobre algoritmos certificadores [2], busca-se em geral possibilitar
uma verificação simples, de forma que a corretude do próprio verificador possa ser
trivialmente comprovada, e eficiente, permitindo que a resposta seja verificada a
partir da testemunha fornecida sem aumento significativo do tempo total de pro-
cessamento. Há, no entanto, dois casos que fogem a esse padrão e que apresentam,
ainda assim, interesse do ponto de vista de certificação/verificação. O primeiro caso
é aquele em que conseguimos construir verificadores que prescindem de testemunhas,
pois são capazes de efetuar a verificação de forma simples e eficiente diretamente da
resposta obtida. O segundo é o caso em que a testemunha exibida permite uma veri-
ficação que não é formalmente eficiente, por demandar tempo exponencial, mas que,
para instâncias pequenas, é computacionalmente viável, permitindo por exemplo a
criação de provas computacionais para teoremas.

Ilustramos os dois casos acima, respectivamente, com algoritmos verificadores
para o problema da seleção dos k maiores elementos [1] e o problema de reconheci-
mento de grafos de disco unitário [3].
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The three-in-a-tree algorithm, proposed by Chudnovsky and Seymour [1], solves
the following problem in polynomial time: given a graph with three prescribed
vertices, check whether there is an induced tree containing these vertices.

In this work we deal with a generalization of this problem, known as k-in-a-tree
problem. For the case where k is part of the input, the problem is known to be
NP-complete [2]. For fixed k, the complexity of this problem is still open for k ≥ 4.
Polynomial time algorithms for the k-in-a-tree problem for k ≥ 4 are known only
for the cases of claw-free graphs, by Fiala et al. [3], and graphs with girth at least
k, by Trotignon and Wei [4].

In this work we give a O(nm2) time algorithm for the k-in-a-tree problem for
chordal graphs, even in the case where k is part of the input.
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Let M be a symmetric m × m matrix over 0, 1, ∗. An M -partition of a graph
G is a partition of the vertex set V (G) into m parts V1, V2, . . . , Vm such that: (i) Vi

is a clique (respectively independent set) if M(i, i) = 1 (respectively M(i, i) = 0);
(ii) there are all possible edges (respectively non-edges) between parts Vi and Vj,
i 6= j, if M(i, j) = 1 (respectively M(i, j) = 0); (iii) there are no restrictions be-
tween parts Vi and Vj, i 6= j, if M(i, j) = ∗. A graph G that does not admit an
M -partition is called an M -obstruction. A minimal M -obstruction is a graph G
which is an M -obstruction, but such that every proper induced subgraph of G ad-
mits an M -partition. In [1] it is has been shown that matrix partition problems for
cographs admit polynomial time algorithms and forbidden induced subgraph char-
acterizations. Also, the authors bound the size of a largest minimal M -obstruction
cograph.

This work provides explicit characterizations of M-partitionable cographs, in
terms of minimal obstructions, for some 4x4 matrices M. More specifically, we have
analyzed all matrices that correspond to partitions into 4 independent sets.

This work provides explicit characterizations of M -partitionable cographs, in
terms of minimal obstructions, for some 4 × 4 matrices M . More specifically, we
have analyzed all matrices that correspond to partitions into 4 independent sets.
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Complementary prism is a special case of a more general complementary product and a
variation of the well-known prism. For a graph G with vertex set V (G) = {v1, . . . , vn} and
edge set E(G), the complementary prism of G is the graph denoted by GḠ with vertex set
V (GḠ) = {v1, . . . , vn} ∪ {v̄1, . . . , v̄n} and edge set E(GḠ) = E(G) ∪ {v̄iv̄j : 1 ≤ i < j ≤
n and vivj 6∈ E(G)} ∪ {v1v̄1, . . . , vnv̄n}.

In other words, the complementary prism GḠ of G arises from the disjoint union of the graph
G and its complement Ḡ by adding the edges of a perfect matching joining pairs of corresponding
vertices of G and Ḡ. For every vertex u of G, we will consistently denote the corresponding
vertex of Ḡ by ū. Similarly, if U is a set of vertices of G, then let Ū = {ū : u ∈ U} denote the
corresponding set of vertices of Ḡ. Let V (GḠ) = V (G) ∪ V (Ḡ) where V (Ḡ) = {v̄1, . . . , v̄n}.

We study algorithmic/complexity properties of complementary prisms with respect to cliques,
independent sets, k-domination, and especially P3-convexity. We establish hardness results and
identify some efficiently solvable cases. The description of our results is presented bellow.

Theorem 1 Let d be a positive integer.
For each of the following three properties, it is NP-complete to decide whether a given pair

(G, k) where G is a graph and k is an integer has the property.

(i) GḠ has a clique of order k.

(ii) GḠ has an independent set of order k.

(iii) GḠ has a d-dominating set, that is, a set D of vertices of GḠ such that every vertex u in
V (GḠ) \ D has at least d neighbors in D.

Theorem 2 Let G be a graph.

(i) If G has k components with k ≥ 2, then GḠ has a P3-hull set of order k + 1.

(ii) If G and Ḡ are connected, then GḠ has a P3-hull set of order 5.

Theorem 3 It is NP-complete to decide for a given pair (G, k) where G is a graph and k is an
integer whether GḠ has a P3-Carathéodory set of order k. Furthermore, for trees or cographs
the minimum P3-Carathéodory set can be determined in polynomial time.
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A fullerene graph G = (V,E) is planar, cubic and 3-connected with only pen-
tagonal and hexagonal faces. All fullerene graphs have exactly 12 pentagonal faces.
Recent studies indicate that fullerene graphs can contribute to the considerable de-
velopment of medicine, chemistry, physics and engineering. Hence, its theoretical
and applied importance.

Let G = (V,E) be a connected graph. The distance d(u, v) between two vertices
u, v ∈ V , is the number of edges in a shortest path between u and v. The diameter
diam(G) = max {d(u, v) : u, v ∈ V } of a connected graph G is the biggest distance
between two vertices of G.

We investigate the symmetry of these graphs based on the location of its pentag-
onal faces. More precisely, we say that a fullerene graph has icosahedral symmetry
when the geometric centers of its 12 pentagonal faces give rise to an icosahedron. In
this case, we just join the centers of the nearest pentagons, i.e., each center pentagon
will match exactly 5 other centers. In a fullerene graph, each vertex belonging to a
pentagonal face is said pentagonal vertex, otherwise it is called hexagonal vertex.

In 1937, Goldberg[2] suggested the use of a hexagonal lattice to represent poly-
hedra in the plane. Given two positive integer parameters i, j, Goldberg showed
how to yield a icosaedral fullerene graph Gi,j. We will use this technique, devised by
Goldberg, to represent the icosahedra in the plan generated from symmetric icosahe-
dral fullerenes graphs. Andova and Skrekovski[1] solve the problem of the diameter
of Gi,i and Gi,0, finding diam(Gi,j) = 6j + 4i− 1 and conjectured that the diameter

of a fullerene graph G on n vertices satisfies diam(G) ≥
⌊√

5
3
n
⌋
− 1. Given a pair

of positive integers i > 0 and j ≥ 2i + 1, in this paper we establish the diameter
diam(Gi,j) = 6j + 2i− 1.
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We consider only finite, simple and connected graphs G. Given a set S ⊆ V (G),
we say that the closed interval I[S] of S is the set of vertices lying on shortest
paths between any pair of vertices of S. The set S is geodetic if I[S] = V (G). The
eccentricity of a vertex v is the number of edges in the maximum shortest path
between v and any vertex w of G. A vertex v is a contour vertex if no neighbor of
v has an eccentricity greater than v. The contour Ct(G) of G is the set formed by
all contour vertices of G. A vertex w is an eccentric vertex of some vertex v if the
distance between v and w is equal to the eccentricity of v. We denote I2[S] = I[I[S]].

In this work, we present some structural and computational results for two prob-
lems proposed by Cáceres et al. in 2005. The first of them is the problem of
determining whether the contour of a graph is geodetic. The authors showed that
the contour of distance-hereditary graphs is geodetic and there exist graphs with
non-geodetic contour. The second one is the problem of deciding if there exists a
graph G such that I2[Ct(G)] 6= V (G). This problem remains open until nowadays.

We prove that for any set of vertices S, if Ct(G) ⊆ S and |S| ≥ |V (G)|−3, then
S is a geodetic set. Every graph G presented in the literature whose Ct(G) is non-
geodetic is such that |V (G)\I[Ct(G)]| = 1. Thus, our result implies that I[Ct(G)] is
geodetic for all of them. We present three infinite families of graphs whose contour
is non-geodetic, particularly, one of them is such that |V (G) \ I[Ct(G)]| > 3. We
also prove that for integers (a, b, c, d), a ≥ 3, b ≥ 1, c ≥ 1, d ≥ 1, there exists a
graph with a contour vertices, b vertices that does not belong to I[Ct(G)] and c
contour vertices with d eccentric vertices which are not contour vertices. Finally,
using computational tools we verified that if |V (G)| < 10, then Ct(G) is geodetic;
and there exist 4 non-isomorphic graphs with 10 vertices whose contour is non-
geodetic and we present these graphs. As a corollary, if there exists a graph G such
that I2[Ct(G)] 6= V (G), then |V (G)| > 10.
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Dado um grafo G, um conjunto de vértices S de G é geodeticamente convexo se
todos os vértices de qualquer caminho mı́nimo entre dois vértices de S pertencem a
S.

Existem alguns parâmetros bastante estudados associados a convexidades em
grafos, como posto, número de Radon e número de Carathéodory. Neste trabalho
estudamos, na convexidade geodética, o parâmetro conhecido como número de Helly.
Tal parâmetro é definido como o menor número inteiro k para o qual toda famı́lia
C, composta por conjuntos formados pelos vértices de G geodeticamente convexos e
k-intersectante, possui um vértice comum a todos os conjuntos de C. Denotamos o
parâmetro por h(G).

Determinamos o número de Helly para algumas classes de grafos, como as árvores,
ciclos, grafos k-partidos completos, grafos distância hereditária e grades completas
de dimensão d. Em todos os casos, exceto ciclos, o número de Helly é igual ao
tamanho da clique máxima do grafo. Para ciclos de tamanho l, em que l 6= 4, o
número de Helly é igual a três, já para ciclos de tamanho igual a quatro, temos que
h(C4) é igual a dois. Mostramos também que somente para grafos completos Kn o
número de Helly é igual a n.

Apresentamos uma caracterização parcial dos grafos que possuem número de
Helly igual a dois e também um teorema cuja aplicação possibilita a determinação
do parâmetro para certos grafos cordais e também para alguns grafos espećıficos.
Tal teorema se vale da caracteŕıstica de alguns vértices simpliciais espećıficos no
grafo G, que chamamos de restritos. Um vértice simplicial a em um grafo G é dito
restrito quando sua vizinhança aberta induz uma clique não maximal em G \ {a}.
Nessas condições, mostramos que o número de Helly do grafo G é igual ao do grafo
G \ {a}.

Finalmente, são descritos dois limitantes inferiores para o número de Helly
geodético de um grafo.
Keywords: convexidade, convexidade geodética, número de Helly.
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Interval graphs, the intersection graphs of intervals on the real line, form a well-
known and widely studied graph class since the sixties. Since then, many other graph
classes have gained attention at least (if not mostly) due to their strict relation
to the class of interval graphs. Corneil and Kamula [2] introduced the notion of
point-interval graphs, or PI graphs, which is the intersection graphs of a family of
triangles ABC between parallel lines L1 and L2 such that A lies on L1 and BC is a
segment of L2. Many recognition approaches exist for interval graphs, Mertzios [3]
provided an efficient algorithm for recognizing whether a given graph is a PI graph.
Balof and Bogart [1] presented the notion of free triangle graphs, a generalization
of PI graphs, which consists of the intersection graphs of a family of triangles ABC
between parallel lines L1 and L2 such that A lies on L1, B lies on L2, and the location
of C is free. If such an intersection model of triangles also satisfies the property of
having all triangles with a unitary area, then the graph is called unit free triangle
graph. The recognition of free triangle graphs is open, even in its unit case.

Aiming to tackle this latter dificulty, we pose the problem of recognizing the
class of unit PI graphs. As partial results, we show that the class of unit PI graphs
is a proper subset of the intersection of those of PI graphs (efficiently recognizable)
and unit free triangle graphs (whose recognition problem is open). It is also shown
that, contrary to PI graphs, unit PI graphs do not generalize interval graphs.

Besides, we show that the class of threshold signed graphs is included in a larger
class that can be defined in terms of more graph-theoretical terms. A graph is
threshold signed if there are positive real numbers S, T (the thresholds) and, for
every vertex v, there is a real weight wv ≤ min{S, T} such that vu is an edge if and
only if |wv + wu| ≥ S or |wv − wu| ≥ T .
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