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VIII LATIN AMERICAN WORKSHOP ON CLIQUES IN GRAPHS

Federal Center of Technological Education of Rio de Janeiro (CEFET/RJ)
August 9-11, 2018

Rio de Janeiro, Brazil

We feel very honored to have been offered the responsibility to host the Latin American
Workshop on Cliques in Graphs as a satellite event of the International Congress of Math-
ematicians. The first Latin American Workshop on Cliques in Graphs was held in Rio de
Janeiro in 2002; the series continued with La Plata/Argentina (2006), Guanajuato/Mexico
(2008), Itaipava/Brazil (2010), Buenos Aires/Argentina (2012), Pirenópolis/Brazil (2014),
and La Plata/Argentina (2016).

Throughout all these years, the number of participants and lectures have increased sig-
nificantly. In its eighth edition, the workshop reached the exceptional number of 80 con-
tributed talks, most of them coauthored by students from all over the world: Argentina,
Australia, Brazil, Canada, Chile, the United States, France, Mexico, Norway, and Switzer-
land. We are really grateful to all the participants for their contributions, in particular to
the four invited speakers who generously accepted our invitation.

The aim of the Latin American Workshop on Cliques in Graphs is to promote a meeting
of researchers in Graph Theory, Algorithms and Combinatorics, specially those working
in Graph Operators, Intersection Graphs, Perfect Graphs, and related topics. The main
goal in this series of workshops is to strengthen existing collaboration and to promote the
creation of new international research groups.

We are grateful to the members of the Steering and Program Committees and especially to
the members of the Organizing Committee at the Federal Center of Technological Educa-
tion of Rio de Janeiro, the host institution, all members have worked hard in carrying out
the many tasks necessary for successfully holding this meeting. We thank the significant
financial support given by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do
Estado do Rio de Janeiro (FAPERJ), the state research agency, through the Cientista do
Nosso Estado project.

We are grateful to professors Jayme Luiz Szwarcfiter and Nelson Maculan Filho, who
gave the wonderful opportunity for our workshop to take place as a satellite, occurring
immediately after ICM 2018, so that the workshop can benefit from this unique moment for
Mathematics in Brazil. The Latin American community of researchers in Combinatorics
acknowledge the mirabilis year july 42 – july 43, when our professors Jayme and Maculan
were born, with our thankful wishes and warmest regards to them!

Celina de Figueiredo, UFRJ
Cláudia Linhares Sales, UFC

Raphael Machado, INMETRO e CEFET
Rosiane de Freitas, UFAM
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Jayme Szwarcfiter, UFRJ and UERJ, Rio de Janeiro, Brazil
Liliana Alcón, UNLP, La Plata, Argentina
Márcia Cappelle, UFG, Goiânia, Brazil
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Conference Program

August 9th

Registration at CEFET (09:00 - 10:00)

Room 1 (10:00 - 11:00)

1 Critical ideals of graphs and applications. Carlos A. Alfaro, Jephian C.-H. Lin.

2 Some Spectral Properties of Fulleroids-(3, 4, 6). Celso M. da Silva Jr., Diego de S.
Nicodemos.

3 Some spectral properties of spider graphs. Renata R. Del-Vecchio, Lucas L. S.
Portugal, Celso M. da Silva Jr..

4 The Zero-Divisor Graphs of the Direct Product of Commutative Rings. André Ebling
Brondani, Francisca Andrea Macedo França, Daniel Felisberto Traciná Filho.

Room 2 (10:00 - 11:00)

5 Arc-disjoint branching flows. A. Karolinna Maia, Jonas Costa, Raul Lopes.

6 A linear algorithm to find the distance in Cayley Graph Hl,p. C. S. R. Patrão, D.
Castonguay, A. C. Ribeiro, L. A. B. Kowada.

7 A pseudo-polynomial algorithm for the two-dimensional guillotine cutting stock.
Uéverton Souza, Leonardo Perazzini, Pedro Henrique González.

8 Tessellations on graphs with few P4’s. Alexandre Abreu, Franklin Marquezino, Daniel
Posner.

Coffee break (11:00 - 11:30)

Plenary Talk (11:30 - 12:30)

On the genus of dense graphs (Bojan Mohar).

Lunch (12:30 - 14:00)



Room 1 (14:00 - 15:00)

9 Pebbling in Semi-2-Trees. Liliana Alcón, Marisa Gutierrez, Glenn Hurlbert.

10 Determining optimum tree t-spanners for split graphs and cographs. Fernanda
Couto, Lúıs Cunha, Diego Ferraz.

11 A kernelization algorithm for Closest String parameterized by the number of input
strings. M. B. Stockinger, U. S. Souza.

12 Prismas complementares com 2-atribuição de papéis. Diane Castonguay, Elisângela
Silva Dias, Fernanda Neiva Mesquita.

Room 2 (14:00 - 15:00)

13 A forbidden subgraph characterization of nested and 2-nested graphs. Guillermo
Durán, Luciano N. Grippo, Nina Pardal, Mart́ın D. Safe.

14 On Gallai and anti-Gallai chordal graphs. G. A. Durán, F. Fernández Slezak, L. N.
Grippo, F. S. Oliveira, M. D. Safe.

15 Characterizing Star Graphs. Guilherme de C. M. Gomes, Carlos V. G. C. Lima,
Vińıcius F. dos Santos.

16 New results on dually-CPT graphs. L. Alcón, N. Gudiño, M. Gutierrez.

Room 1 (15:00 - 16:00)

17 Vector Domination Problem on the family of Split-Indifference Graphs. Rodrigo
Lamblet Mafort, Fábio Protti.

18 Determinant families of dually chordal graphs. Pablo De Caria.

19 Characterization by forbidden subgraphs of near-bipartite P4-tidy graphs. Fábio
Silva, Raquel Bravo, Rodolfo Oliveira, Uéverton Souza.

20 Characterizing General Fullerene Graphs. S. Dantas, L. Faria, A. Furtado, S. Klein,
D. Nicodemos.

Room 2 (15:00 - 16:00)

21 On the adjacent vertex-distinguishing total coloring of power of cycles. J.D. Al-
varado, S. Dantas.

22 Identifying codes in complementary prisms. Juliana Paula Félix, Márcia Rodrigues
Cappelle.

23 On identifying codes in the Cartesian product of a star and a path. Juliana Paula
Félix, Márcia Rodrigues Cappelle.

24 Sobre Códigos Corretores de Distância Hamming 3. Natália Pedroza, Paulo E. Pinto,
Jayme L. Szwarcfiter.



Coffee break (16:00 - 16:30)

Room 1 (16:30 - 17:30)

25 The Biclique Graph of K3-free Graphs are the Square of Some Graph. Marina
Groshaus, André L. P. Guedes.

26 On the Diameter of Spherical Fullerene Graphs. S. Dantas, V. Linder, D. Nicode-
mos.

27 Some forbidden structures for the near-bipartition problem on distance-hereditary
graphs. Rodolfo Oliveira, Raquel Bravo, Uéverton Souza, Fabio Silva.

28 Caracterização estrutural de grafos-(1, 2) bem-cobertos. S. R. Alves, F. Couto, L.
Faria, S. Gravier, S. Klein, U. dos S. Souza.

Room 2 (16:30 - 17:30)

29 An optimal algorithm to totally color some power of cycle graphs. Alesom Zorzi,
Celina de Figueiredo, Raphael Machado.

30 Equitable total coloring of graphs with universal vertex. Mayara Midori Omai,
Sheila Morais de Almeida, Diana Sasaki Nobrega.

31 A Recolouring Procedure for Total Colouring. L. M. Zatesko, R. Carmo, A. L. P.
Guedes.

32 The b-continuity of graphs with large girth. Allen Ibiapina, Ana Silva.

Welcome Ceremony at UERJ (17:30)

August 10th

Room 1 (9:00 - 10:00)

33 On the null structure of bipartite graphs without cycles of length multiple of 4.
Daniel A. Jaume, Gonzalo Molina, Adrián Pastine.

34 Proper gap-labellings of unicyclic graphs. C. A. Weffort-Santos, C. N. Campos, R.
C. S. Schouery.

35 A Decomposition for Edge-colouring. João Pedro W. Bernardi, Sheila M. de Almeida,
Leandro M. Zatesko.

36 The Colourability problem on (r, l)-Graphs and a few parametrized solutions. M. S.
D. Alves, U. S. Souza.



Room 2: (9:00 - 10:00)

37 Colorings, Cliques and Relaxations of Planarity. Val Pinciu.

38 Algoritmos para os Casos Polinomiais da Coloração Orientada. Mateus de Paula
Ferreira, Hebert Coelho da Silva.

39 Equitable total coloring of classes of tripartite complete graphs. A.G. da Silva, D.
Sasaki, S. Dantas.

40 Graphs with small fall-spectrum. Ana Silva.

Room 1 (10:00 - 11:00)

41 Coloring Game: characterization of a (3, 4∗)-caterpillar. S. Dantas, C.M.H. de
Figueiredo, A. Furtado, S. Gravier.

42 Matching problem for vertex colored graphs. Mart́ın Matamala.

43 Alguns Resultados em Coloração Orientada e Clique Coloração Orientada. Hebert
Coelho, Luerbio Faria, Sylvain Gravier, Sulamita Klein.

44 On the convexity number for complementary prisms. Diane Castonguay, Erika M.
M. Coelho, Hebert Coelho, Julliano R. Nascimento.

Room 2 (10:00 - 11:00)

45 Knot-Free Vertex Deletion Problem: Parameterized Complexity of a Deadlock Res-
olution Graph Problem. Alan D. A. Carneiro, Fábio Protti, Uéverton S. Souza.

46 A Parameterized Complexity Analysis of Clique and Independent Set in Comple-
mentary Prisms. Priscila Camargo, Alan D. A. Carneiro, Uéverton S. Souza.

47 The Diverse Vertex Covers Problem. Julien Baste, Michael R. Fellows, Lars Jaffke,
Mateus de Oliveira Oliveira, Frances A. Rosamond.

48 Directed tree-width is FPT. A. Karolinna Maia, Raul Lopes, Victor Campos.

Coffee break (11:00 - 11:30)

Plenary Talk (11:30 - 12:30)

Clique Operators in Digraphs (Marisa Gutierrez).



Lunch (12:30 - 14:00)

Room 1 (14:00 - 15:00)

49 P3-Helly number of graphs with few P4. Moisés T. Carvalho, Simone Dantas, Mitre
C. Dourado, Daniel Posner, Jayme L. Szwarcfiter.

50 On the P3-Hull Number for Strongly Regular Graphs. Erika M. M. Coelho, Braully
R. Silva , Hebert Coelho.

51 Sobre o número de Sierksma de um grafo. Felipe Pereira do Carmo, Carlos Alberto
de Jesus Marthinon, Uéverton dos Santos Souza, Moisés Teles Carvalho Junior.

52 The Rank on the Graph Geodetic Convexity. M.T. Carvalho, S. Dantas, C.V.G.C.
Lima, V. Linder, V.F. dos Santos.

Room 2 (14:00 - 15:00)

53 Covering a body using unequal spheres and the problem of finding covering holes.
Helder Manoel Venceslau, Marilis Bahr Karam Venceslau, Nélson Maculan.

54 New proposals for the Problem of Covering Solids using Spheres of Different Radii.
Pedro Henrique González, Ana Flavia U. S. Macambira, Renan Vicente Pinto, Luidi
Simonetti, Nelson Maculan, Philippe Michelon.

55 Connectivity of cubical polytopes. Hoa Bui Thi, Guillermo Pineda-Villavicencio,
Julien Ugon.

56 A strategy to select vertices as candidates for routers in a Steiner tree. João Guil-
herme Martinez, Rosiane de Freitas, Altigran da Silva, Fábio Protti.

Room 1 (15:00 - 16:00)

57 Powers of Circular-Arc Models. Francisco J. Soulignac, Pablo Terlisky.

58 Digrafo de intersecćıon de torneos transitivos maximales. G. Sánchez Vallduv́ı, M.
Gutiérrez, B. Llano.

59 Extremal unit circular-arc models. Francisco J. Soulignac, Pablo Terlisky.

60 Circular-arc Bigraphs and the Helly subclass. Marina Groshaus, André Luiz Pires
Guedes, Fabricio Schiavon Kolberg .



Room 2 (15:00 - 16:00)

61 Pursuit Games on graphs with few P4’s. Nicolas Martins, Rudini Sampaio.

62 Clobber game as executive functions test. T. Pará, S. Dantas, S. Gravier, L.A.V.
de Carvalho, P. Mattos.

63 On the Minimum Broadcast Time Problem. Diego Delle Donne, Ivo Koch.

64 On distance colorings, graph embedding and IP/CP models. Rosiane de Freitas,
Bruno Dias, Nelson Maculan, Javier Marrenco, Philippe Michelon, Jayme Szwarc-
fiter.

Coffee break (16:00 - 16:30)

Plenary Talk (16:30 - 17:30)

New results on intersecting families of subsets (Gyula O.H. Katona).

Social Event at CEFET (17:30)

August 11th

Room 1 (9:00 - 10:00)

65 On bicliques and the second clique graph of suspensions. M.A. Pizaña, I.A. Robles.

66 On a Class of Proper 2-Thin Graphs. M. S. Sampaio Jr., F. S. Oliveira, J. L.
Szwarcfiter.

67 On Orthodox Tree Representations of Kn,m. C.F. Bornstein, J.W. Coura Pinto,
J.L. Szwarcfiter.

68 Biclique Graphs of Interval Bigraphs and Circular-arc Bigraphs. E. P. Cruz, M.
Groshaus, A. L. P. Guedes.

Room 2 (9:00 - 10:00)

69 B1-EPG-Helly Graph Recognition. Claudson Bornstein, Tanilson Santos, Uéverton
Souza, Jayme Szwarcfiter.

70 The Terminal connection problem on strongly chordal graphs and cographs. A. A.
Melo, C. M. H. Figueiredo, U. S. Souza.

71 Complexity Analisys of the And/Or graph Solution Problem on Planar Graphs. M.
R. Alves, U. S. Souza.

72 Weighted proper orientations of trees and graphs of bounded treewidth. Julio
Araujo, Cláudia Linhares Sales, Ignasi Sau, Ana Silva.



Room 1 (10:00 - 11:00)

73 Sobre los grafos PVPG: una subclase de los grafos vértice intersección de caminos en
una grilla. Liliana Alcón, Flavia Bonomo, Maŕıa Ṕıa Mazzoleni, Fabiano Oliveira.

74 Clique-divergence is not first-order expressible for the class of finite graphs. Carmen
Cedillo, Miguel Pizaña.

75 On Clique-Inverse Graphs of Graphs with Bounded Clique Number. Liliana Alcón,
Sylvain Gravier, Claudia Sales, Fabio Protti, Gabriela Ravenna.

76 The unit-demand envy-free princing problem applied to the sports entertainment
industry. Marcos Salvatierra, Rosiane de Freitas.

Room 2 (10:00 - 11:00)

77 Worst cases in constrained LIFO pick-up and delivery problems. Sebastián Urrutia,
Dominique de Werra.

78 Size Multipartite Ramsey Number. Pablo Henrique Perondi, Emerson Luiz do
Monte Carmelo.

79 Maximum number of edges in graphs with prescribed maximum degree and matching
number. Pinar Heggernes, Jean R. S. Blair, Paloma T. Lima.

80 An extremal problem on the interval counts. L. S. Medeiros, F. S. Oliveira, J. L.
Szwarcfiter.

Coffee Break (11:00 - 11:30)

Plenary Talk (11:30 - 12:30)

Minimizing the Solid Angle Sum of Orthogonal Polyhedra and Edge Guarding
(Jorge Urrutia).

Social Event at Lapa (19:00 - 22:00)





Plenary talks





On the genus of dense graphs

Bojan Mohar
Simon Fraser Universit & IMFM

Canada and Slovenia
mohar@sfu.ca

Abstract

What is the smallest genus of a surface in which the complete graph
Kn can be embedded? This question, known as the Heawood problem,
was resolved in 1968 by Ringel and Youngs and its solution gave birth
to topological graph theory. In the 1990s, Archdeacon and Grable and
Rödl and Thomas proved that the genus of random graphs behaves
very much like the genus of complete graphs.

The speaker will outline some recent results about genus embed-
dings of dense graphs building on the work outlined above. The work,
which was originally motivated by algorithmic questions, uses modern
notions of quasi-randomness and graph limits, and leads to interesting
new problems in topological graph theory.

Substantial part of the talk will be based on recent joint work with
Yifan Jing.



Clique Operators in Digraphs

Marisa Gutierrez
Departamento de Matemática Universidad Nacional de La Plata,

Argentina. CONICET

Keywords: disimplex, dicliques, transitive tournaments

Doing a review of the results obtained on the clique operator, a lot of
water has flowed under the bridge...

We know what graphs live in the image, how difficult is to decide about
them. We have played with the iterated clique operator and obtained results
on convergence, divergence, periodicity, etc. Recently we have learned that
clique-convergence is undecidable for infinite graphs. We have analyzed its
behavior in certain classes of graphs. And as if this were not enough, there
were also experts who got involved with the bicliques of a graph. These
results have seen the light mainly in Latin America and that is why we are
here!

In this talk we will show you what currently has us trapped, new ver-
sions of the clique operator but in directed graphs, the following two new
operators:

Transitive Tournament Operator τ

• V(τ(D)) is the set of maximal transitive subtournaments of D ( max-
imal by inclusion).

• A(τ(D)): if T1 and T2 are vertices of D and f1, f2, s1, s2 the corre-
sponding sources and sinks, then T1 → T2 iff s1, f2 ∈ T1 ∩ T2 and
f1, s2 /∈ T1 ∩ T2

Diclique Operator
−→
K

• V (
−→
K(D)) is the set of dicliques D that are maximal disimplex of D.

• A(
−→
K(D)): if (A,B) and (A′, B′) are dicliques of D, then (A,B) −→

(A′, B′) iff B ∩A′ 6= ∅.

We will present our first results about them, the convergency, divergency
and the behavior on certain classes of digraphs.



New results on intersecting families of subsets

Gyula O.H. Katona
MTA Rényi Institute

Budapest Pf 127, 1364 Hungary
ohkatona@renyi.hu

Abstract

Let [n] = {1, 2, . . . , n} be the underlying set. A family F ⊂ 2[n]

of its subsets is called intersecting if F,G ∈ F implies F ∩ G 6= ∅. It
is trivial that the largest intersecting family has 2n−1 members. The
situation is different when only k-element subsets are considered, that
is F ⊂

(
[n]
k

)
. The celebrated Erdős-Ko-Rado theorem says that if

k ≤ n
2 then an intersecting family of k-element sets cannot have more

than
(
n−1
k−1

)
members. Equality can be obtained for the family of sets

containing one fixed element.

We will survey some of the results of the history of the area and
show some new developments. One such direction is the problem of
“two-part intersecting” families. The underlying set [n] is partitioned
into X1 and X2. Is it still true that the largest intersecting family is the
one consisting of members containing one fixed element? It is perhaps
surprising that the answer is yes. Even in the following very general
form. Some positive integers ki, `i(1 ≤ i ≤ m) are given. We prove
that if F is an intersecting family containing members F such that
|F ∩X1| = ki, |F ∩X2| = `i holds for one of the values i(1 ≤ i ≤ m)
then |F| cannot exceed the size of the largest subfamily containing one
element. The statement was known for the case m = 2 as a result of
Frankl.

The shadow σ(F) is defined for the case when F ⊂
(
[n]
k

)
. It is a

family of all k− 1-element subsets of members of F . The shadow the-
orem determines the minimum size of the shadow family for fixed n, k
and |F|. The optimal family consists of sets being at the “beginning”
of [n]. This family often contains disjoint pairs. Therefore to find the
smallest shadow of an intersecting family is very different from the tra-
ditional problem. We will introduce some old and new results of this
kind.



Minimizing the Solid Angle Sum of Orthogonal
Polyhedra and Edge Guarding

Jorge Urrutia
Instituto de Matemáticas

Universidad Nacional Autónoma de México
Ciudad de México, México.

A well known problem in Art Galleries and illumination problems, is that
any orthogonal polygon can always be guarded using bn4 c guards. In this talk
we extend these results to edge guarding of orthogonal polyhedron in R3.

To obtain our results, we generalize generalize to R3 the well-known result
that in an orthogonal polygon with n vertices, (n+4)/2 of them are convex
and (n − 4)/2 of them are reflex. We define a vertex of a polyhedron to
be convex on the faces if it is convex or straight in all the faces where it
participates, and to be reflex on the faces otherwise. If a polyhedron with n
vertices and genus g has k vertices of degree greater than 3 (in its 1-skeleton),
we prove that it has (n+8−8g+3k)/2 vertices that are convex on the faces
and (n− 8 + 8g − 3k)/2 vertices that are reflex on the faces.

We also give a characterization for the orthogonal polyhedron in R3 that
minimize the sum of its internal solid angles, and prove that their minimum
angle sum is (n− 4)π and their maximum angle sum is (3n− 24)π.

If time allows, we will prove that if the orthogonal polyhedron has k4 ver-
tices of degree 4, k6 vertices of degree 6, genus g and hm holes on its faces,
then we can guard it using at most (11e− k4 − 3k6 − 12g − 24hm + 12)/72
π
2 -edge guards (i.e., having a visibility angle of π/2 in the relative interior of
each edge).

References

[1] J. Abello, V. Estivill-Castro, T. Shermer, and J. Urrutia: Illumination
of orthogonal polygons with orthogonal floodlights. Internat. J. Comp.
Geom. 8: 25–38 (1998).



[2] N.M. Benbernou, E.D. Demaine, M.L. Demaine, A. Kurdia J. O’Rourke,
G. Toussaint, J. Urrutia, and G. Viglietta: Edge-guarding Orthogonal
Polyhedra): CCCG 2011, Toronto ON, August 10-12, 2011, pp. 461–
466.

[3] J. Urrutia: Art gallery and illumination problems. In J.- R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 973–
1027. North-Holland, 2000.

[4] G. Viglietta: Face-Guarding Polyhedra. Computational Geometry:
Theory and Applications, vol. 47, no. 8, pp. 833–846, 2014.
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Joint work with I. Aldana-Galván, J.L. Álvarez-Rebollar, M. Jiménez-Salinas,
and E. Solís-Villarreal, Posgrado en Ciencias Matemáticas, Universidad Na-
cional Autónoma de México, Ciudad de México, México, and Posgrado en
Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de
México, Ciudad de México, México.
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(The order number in the program is the page number)





Critical ideals of graphs and applications

Carlos A. Alfaro 1,∗ Jephian C.-H. Lin 2

1 Banco de México
2 Department of Mathematics and Statistics, University of

Victoria, Victoria, BC V8W 2Y2, Canada

Keywords: critical ideals, minimum rank, zero forcing number.

Given a graph G and a set of indeterminates XG = {xu : u ∈ V (G)},
the generalized Laplacian matrix L(G,XG) of G is the matrix whose uv-
entry is given by xu, if u = v, and the number −muv of edges between
vertices u and v, otherwise. Let R[XG] denote the polynomial ring over a
commutative ring R with unity in the variables XG, then for 1 ≤ i ≤ n the
i-th critical ideal IRi (G,XG) of G are the determinantal ideals spanned by
〈minorsi(L(G,XG))〉 ⊆ R[XG], where n is the number of vertices of G and
minorsi(L(G,XG)) is the set of the determinants of the i× i submatrices of
L(G,XG).

Initially, critical ideals were defined as a generalization of the critical
group, also known as sandpile group. Furthermore, the varieties associated
to these ideals can be regarded as a generalization of the Laplacian and
Adjacency spectra of G. Recently, there have been found relations between
the zero forcing number and the minimum rank of a graph with the algebraic
co-rank.

In this talk, we are going to outlook how all these concepts are related.
And show few characterizations for these parameters where cliques and stable
sets play an important role.

1



Some Spectral Properties of Fulleroids-(3, 4, 6)

Celso M. da Silva Jr. 1 Diego de S. Nicodemos 2,∗
1 DEMET and PPPRO, CEFET-RJ, Brazil,

2 Colégio Pedro II, Brazil.

Keywords: Fullerene Graphs, Fulleroid-(3, 4, 6) Graphs, Adjacency Matrix,
Eigenvalue and Odd Cycle Transversal.

Let G = (V,E) be a simple, finite and undirected graph on n vertices. A
set of edges of G is an odd cycle (edge) transversal if its removal results in a
bipartite graph. According to [1] finding a minimum odd cycle transversal of
a graph is equivalent to partitioning the vertex set into two parts, such that
the number of edges between the two parts is maximum (max-cut problem).
The adjacency matrix of G, A(G) = [ai,j], is the square matrix of order n,
such that ai,j = 1, if vi and vj are adjacent and ai,j = 0, otherwise. An
eigenvalue of a graph G is an eigenvalue of its adjacency matrix A(G).

A fullerene graph is a 3-connected 3-regular planar graph with only pen-
tagonal and hexagonal faces. Actually fullerene graphs model fullerene mole-
cules and there is a great scientific interest in discovering/determining param-
eters of fullerenes graphs related to fullerene molecule stability. A number of
invariants of these graphs have been examined recently as possible predictors
of fullerene stability, including, for example, the smallest size of an odd cycle
transversal and its smallest eigenvalue.

In this work we discuss a variation of a fullerene graph: a fulleroid-(3, 4, 6)
graph which is a cubic 3-connected planar graph with all faces of size 3, 4
or 6. In particular, we obtain an upper bound on its smallest eigenvalue by
using the relationship between this paramater and the smallest size of an odd
cycle transversal.

References

[1] Faria, L.; Klein, S. and Stehĺık, M., Odd Cycle Transversals and Inde-
pendent Sets in Fullerene Graphs, SIAM Journal of Discrete Mathematic
Vol. 48 (2012), 1458–1469.
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Some spectral properties of spider graphs

Renata R. Del-Vecchio 1 Lucas L. S. Portugal 2

Celso M. da Silva Jr. 3,∗
1 Instituto de Matemática, UFF, Brazil,

2 PGMAT, UFF, Brazil,
3 DEMET and PPPRO, CEFET-RJ, Brazil.

Keywords: Spider graphs, Signless Laplacian matrix, Distance matrix, dis-
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We call G a P4-sparse graph [1] if every set of five vertices in G in-
duces at most one P4. This class of graphs extends the well-known class
of cographs and its subclass of thereshold graphs, both with already known
spectral properties. In [2], it was proved that G is a connected P4-sparse
graph with connected complement if and only if G is a spider whose head, if
exists, induces a P4-sparse graph.

Given a connected graph G, let D(G) be the distance matrix of G, and
let T (G) be the diagonal matrix of the row sums of D(G). In analogy to
signless matrix of G, Q(G), it was recently introduced the matrix DQ(G) =
T (G) +D(G), called the distance signless Laplacian of G [3].

In this work we study some spectral properties of spider graphs, an im-
portant class to characterize P4-sparse graphs. In particular, we discuss the
M -spectrum of these graphs, in case where M is the signless Laplacian ma-
trix, distance matrix and distance signless Laplacian matrix. Bounds for
their M -eigenvalues are shown, including Nordhaus-Gaddum type relations.

References:
[1] Hoang, Trong Chinh. A class of perfect graphs. Diss. McGill University
Libraries, 1983.
[2] Jamison, Beverly, and Stephan, Olariu. ”A tree representation for P4-
sparse graphs.” Discrete Applied Mathematics 35.2 (1992): 115-129.
[3] Aouchiche, Mustapha, and Pierre Hansen. ”Two Laplacians for the dis-
tance matrix of a graph.” Linear Algebra and its Applications 439.1 (2013):
21-33.
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Abstract

Let R be a commutative ring with nonzero identity. The idea
of a zero-divisor graph of R was introduced by Beck in [2], where
he was mainly interested in colorings of R. Our definition of a zero-
divisor graph of R, denoted by Γ(R), and the emphasis on the interplay
between the graph-theoretic properties of Γ(R) and the ring-theoretic
properties of R are due to Anderson and Livingston in [1]. Given
a positive integer k, be p1, p2, . . . , pk integers such that pℓ ≤ pℓ+1,
1 ≤ ℓ ≤ k − 1, and consider the ring R′ ≃ Fp1 × Fp2 × . . . × Fpk ,
where Fpi , 1 ≤ i ≤ k, is a field with pi elements. In this work we will
show some results, obtained during the study of the structure in Γ(R′).
Among them, we determine an algebraic expression for the degree of
each vertex of Γ(R′) as a function of the orders of each field, and,
in particular, we obtain expressions for the maximum and minimum
degrees of the graph. In addition, we find a condition necessary for a
given graph to be a zero-divisor graph of a ring of the type R′.
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A network N = (V,A, u) is a digraph D = (V,A) equipped with a capacity
function u : A→ Z+. A flow in a network N is a function x : A→ Z+. We
denote the value of x on the arc vw ∈ A and the capacity of the same arc
by xvw and uvw, respectively. The balance vector of a flow x is a function bx
which gives to each vertex v ∈ V the value: bx(v) =

∑
vw∈A xvw−

∑
zv∈A xzv.

A flow x is feasible if xvw ≤ uvw, for all vw ∈ A.
An s-branching flow on a network N with n vertices is a flow x with

balance vector bx(s) = n − 1 and bx(v) = −1 for all v ∈ V \ {s}. We focus
on the problem of finding multiple arc-disjoint branching flows on a given
network, as introduced in [1]. We study its complexity on networks when
considering fixed capacities on the arcs. A previous result from [2] shows that,
as a consequence of the Exponential Time Hypothesis (ETH) [3], this problem
is hard in networks on n vertices where all the arcs have capacity equal to
n− f(n), where f is an integer function such that (log(n))1+ε ≤ f(n) ≤ n/2
for ε > 0. We extended this result showing that, under the same assumptions,
the problem is also hard when the capacities are equal to f(n).
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The family of graphs H`,p has been defined in the context of edge par-
titions [1]. The established properties such as vertex-transitivity and low
diameter suggest this family as a good topology for the design of intercon-
nection networks. The p`−1 vertices of the graph H`,p are the `-tuples with
values between 0 and p − 1, such that the sum of the ` values is a multiple
of p, and there is an edge between two vertices, if the two corresponding
tuples have two pairs of entries whose values differ by one unit. The distance
between two vertices in a graph is the number of edges in a shortest path
connecting them.

In this work, as the diameter of the graph H`,p is θ(` · p) [2], then any
algorithm to show the path between two vertices needs Ω(` ·p) steps, however
we show that to find its distance can be done in θ(` · log p), which is the input
size in bits, and therefore our algorithm has optimal asymptotic complexity.
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Producing parts from a rectangular plate P is a common and impor-
tant industrial problem. Whenever the strategy to extract the parts from
P is a guillotine cut, this combinatorial optimization problem is known as
two-dimensional guillotine cutting stock problem. This problem consists in
determining a sequence of cuts to be made by a guillotine in P (denoted
cutting pattern) in order to: generate a subset of parts; minimize waste of
material; and consequently maximize the profit of production. Motivated
by its relevance in the industry, this work combines the concepts of graphs
And-Or and dynamic program to develop an algorithm to solve the problem
in pseudo-polynomial time. The use of searches in And-OR graphs to pro-
duce a pseudo-polynomial algorithm, besides being a novel approach to the
literature, it produces an algorithm in with it worst case complexity coincides
with the state of the art to the problem.
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Given a graph G, a tessellation is a set of disjoint cliques that covers the
vertex set V (G). The tessellation cover number T (G) represents the mini-
mum number of tessellations needed such that their union covers the edge set
E(G). Abreu et al. [1] presented an upper bound for T (G) showing that the
chromatic number of the clique graph of G, χ(K(G)), is a tight upper bound.
Abreu et al. [2] improved this upper bound to T (G) ≤ min{χ(K(G)), χ′(G)},
where χ′(G) is the chromatic index of G. They also defined T (G) for re-
stricted graphs classes and analyzed the complexity of the t-tessellabili
ty problem, proving that it is NP-complete for t ≥ 3, and is linear-time
solvable when t = 2. In this work we show that some operations in graphs,
such as the union operation and the addition of a true twin vertex, do not
affect the tessellation cover number of the resulting graphs. Such results al-
lowed us to prove bounds of the tessellation cover number and to establish
efficient polynomial time algorithms for graph classes with few induced paths
of size four, such as quasi-threshold graphs.
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The fundamental question in graph pebbling is whether a given supply
(configuration) of discrete pebbles on the vertices of a connected graph can
reach a particular root vertex r. The operation of pebble movement across an
edge {u, v} is called a pebbling step: while two pebbles cross the edge, only
one arrives at the opposite end, as the other is consumed. A configuration
that can reach r is r-solvable.

The size |C| of a configuration C : V → N = {0, 1, . . .} is its total number
of pebbles

∑
v∈V C(v). The pebbling number π(G) = maxr∈V π(G, r), where

π(G, r) is defined to be the minimum number s so that every configuration
of size at least s is r-solvable. The problem of deciding whether a given
configuration on a graph is r-solvable is NP-complete, even for diameter two
graphs and planar graphs. The problem of deciding whether π(G) ≤ k is
ΠP

2 -complete.
The pebbling numbers for some classes of graphs can be computed in

polynomial time. For example, those for diameter 2 graphs can be found in
quartic time. Recently, we proved that pebbling numbers for split graphs can
be computed in O(n1.41) time. We also conjectured that the pebbling number
of a chordal graph of bounded diameter can be computed in polynomial time.

Along these lines, in this paper we study 2-paths, the sub-class of 2-trees
whose graphs have exactly two simplicial vertices, as well as what we call
semi-2-trees, the sub-class of 2-trees, each of whose blocks are 2-paths, and
prove an exact formula that can be computed in linear time.
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Let G be a graph. A tree t-spanner of G is a spanning tree T in which
the maximum distance in T between any pair of adjacent vertices of G is,
at most, t. The minimum stretch spanning tree problem (msst)
for a graph G is the min-max problem of determining the minimum value
σT (G) = t such that G has a tree t-spanner. The msst has been usually
studied by establishing lower and upper bounds [4], and presenting the exact
minimum value of σT (G) for some graph classes [3]. There are also studies
on computational complexity, for instance, determining whether σT (G) = 2
was settled to be a polynomially time solvable problem [1], while deciding
if σT (G) ≥ 4 is an NP-complete problem. Even so, determining whether
σT (G) = 3 still remains open [2].

We present efficient algorithms to obtain σT (G) values when G is a thresh-
old graph, a split graph and a generalized octahedral graph. With this last
result in addition to the tree decomposition of a cograph, we are able to prove
exact σT (G) values for cographs, a well known subclass of perfect graphs.
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Closest String is a well-known NP-hard problem and consists of finding
a string that minimizes the maximum Hamming distance from a given set
of strings. In 2003, Gramm, Niedermeier, and Rossmanith [1] presented an
ILP formulation for Closest String using O(B(k) * k) variables, where k is the
number of input strings and B(k) is the k-th Bell number. Such a formulation
combined with Lenstra’s [3] result for Integer Programming parameterized
by the number of variables provides an FPT-algorithm for Closest String.

Although discrete parameterized algorithms for Closest String have been
recently developed for different parameters [1, 2], to the best of our knowl-
edge only FPT-algorithms based on integer linear programming is known for
Closest String parameterized by k (cf. [1]), and no kernelization algorithm
have been provided for this parameterized problem.

The goal of this paper is to present new combinatorial FPT-algorithms
to solve Closest String. We present a kernelization algorithm which can be
performed in linear time, and a dynamic programming that combined with
our kernelization provides a great improvement on the running time required
to solve Closest String parameterized by the number of input strings.
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Atualmente, na era da internet e das redes sociais, os grafos são muito im-
portantes para descrever a topologia das redes e representar as relações entre
pessoas. Na teoria das redes sociais, uma sociedade é muitas vezes repre-
sentada por um grafo simples, no qual os vértices representam indiv́ıduos e
as arestas representam as relações entre os indiv́ıduos. A descrição da rede
social é simplificada pela atribuição de papéis para os indiv́ıduos, de modo
que a relação de vizinhança entre os vértices seja preservada. Neste contexto,
temos uma atribuição de papéis de um grafo simples, chamado convidado,
para um grafo sem arestas múltiplas, chamado anfitrião, se existe um ho-
momorfismo localmente sobrejetor, ou seja, um mapeamento de vértices do
grafo convidado para o grafo anfitrião de modo que a relação de vizinhança
é mantida. Assim, todos os papéis da vizinhança da imagem de um vértice
aparecem como papéis da vizinhança do mesmo no grafo convidado.

Restringimos este trabalho ao caso do grafo anfitrião ter apenas dois
vértices. Mesmo neste caso o problema da existência de uma atribuição
de papéis, chamada de 2-atribuição, foi demonstrado ser NP-completo por
Roberts e Sheng em 2001. Consideramos a classe dos prismas comple-
mentares, que são os grafos formados a partir da união disjunta do grafo
com seu respectivo complemento, adicionando as arestas para um empare-
lhamento perfeito entre seus vértices correspondentes. Neste trabalho, temos
como resultado a caracterização da 2-atribuição de papéis em prismas comple-
mentares feita para cada grafo anfitrião espećıfico. Conclúımos que qualquer
prisma complementar de um grafo, que não seja o prisma do caminho com
três vértices, tem uma 2-atribuição de papéis.

1E-mails: {diane, elisangela, fernandamesquita}@inf.ufg.br
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We say a (0, 1)-matrix is nested if it has the consecutive ones property for
the rows (C1P) and every two rows are disjoint or nested (i.e., one is included
in the other). We say a (0, 1)-matrix is 2-nested if it has the C1P and admits
a partition of its rows into two sets such that the submatrix induced by each
of these sets is nested. We say a split graph G with split partition (K,S) is
nested (resp. 2-nested) if the matrix A(S,K) –which indicates the adjacency
between vertices in S and K– is nested (resp. 2-nested). In this work, we
characterize nested and 2-nested matrices by minimal forbidden submatri-
ces. This implies a minimal forbidden induced subgraph characterization for
nested and 2-nested graphs. Our result relies on a characterization of the
consecutive ones property by minimal forbidden submatrices (Tucker, 1972).

Circle graphs (Even and Itai, 1971) are intersection graphs of chords in
a circle. These graphs were characterized by Bouchet in 1994 by forbidden
induced subgraphs of locally equivalent graphs. However, no complete char-
acterizations of circle graphs by forbidden induced subgraphs of the graph
itself is known. Nested and 2-nested graphs are common subclasses of the
classes of threshold graphs and circle graphs. 2-nested graph characterization
arises as a natural subproblem in our ongoing efforts to characterize those
split graphs that are circle graphs by minimal forbidden induced subgraphs.

†This work was partially supported by ANPCyT PICT 2015-2218. G. Durán was par-
tially supported by Millennium Science Institute “Complex Engineering Systems” (Chile).
L.N. Grippo and M.D. Safe were partially supported by UNS PGI 24/ZL16.
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For a graph G, the Gallai graph Gal(G) of G has the edges of G as its vertices,
that is, V (Gal(G)) = E(G), and two distinct vertices e and f of Gal(G) are adjacent
in Gal(G) if the edges e and f of G are adjacent but do not span a triangle in G.
Gallai graphs were introduced in connection with cocomparability graphs [3] and
were used in a polynomial-time recognition algorithm for claw-free perfect graphs
[2]. Obviously, the Gallai graph Gal(G) is a spanning subgraph of the well-known
line graph L(G) of G, which is the intersection graph of the set of edges in G. The
anti-Gallai graph ∆(G), or triangular line graph of G, is the complement of Gal(G)
in L(G), that is, it has E(G) as vertex set and E(L(G)) \ E(Gal(G)) as edge set.
Gallai and anti-Gallai graphs were studied in [1, 5]. In [4], they characterize those
graphs whose Gallai graphs are forests or trees.

In the present work, we prove that
{
G : ∆(G) ∈ {chordal}

}
= {partial 2-tree for-

ests} + {isolated vertices} and characterize
{
G : Gal(G) ∈ {chordal}

}
by forbidden

induced subgraphs.
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Biclique graphs were first characterized by Groshaus and Szwarcfiter [1].
A star is a complete bipartite graph K1,r, for r ≥ 1. The star graph of a
graphH is the intersection graph of the family of maximal induced stars ofH.
An edge clique cover Q = {Q1, . . . , Qk} of a graph G is star-partitioned if
and only if each Qi is partitioned as Qi ∼ {Qc

i , Q
f
i } and, ∀a ∈ V (G), ∃!i such

that a ∈ Qc
i – in which case we say that c(a) = i. The cover of a ∈ V (G)

is defined as Q(a) = {i | a ∈ Qi} and F (a) = Q(a) \ {c(a)}. For each pair
Qi, Qj ∈ Q, define ff(i, j) = Qf

i ∩Qf
j and cf(i, j) =

(
Qc

i ∩Qf
j

)
∪
(
Qf

i ∩Qc
j

)
.

All of the following edge clique covers of a graph G are star-partitioned.
Definition 1. An edge clique coverQ is compatible if, ∀a ∈ V (G), |Q(a)| ≥
2 and if, ∀{Qi, Qj} ⊆ Q, if Qi ∩Qj 6= ∅, either cf(i, j) = ∅ or ff(i, j) = ∅.
Definition 2. An edge clique cover Q is differentiable if ∀Qi ∈ Q and
∀{a, a′} ⊆ Qi the following conditions hold:

1. If {a, a′} ⊆ Qc
i , ∃Qj, Qk ∈ Q such that a ∈ Qf

j , a′ ∈ Qf
k , a /∈ Qf

k ,
a /∈ Qf

j and cf(j, k) 6= ∅. Moreover, if Qc
i ∩Qf

j ∩Qf
k = ∅, cf(j, k) 6= ∅.

2. If a ∈ Qc
i , a′ ∈ Qc

k and a /∈ Qf
k , ∃j ∈ F (a) with cf(j, k) 6= ∅, j /∈ Q(a′)

and, ∀j′ ∈ F (a) with cf(j′, k) = ∅, Qc
i ∩
⋂

j′ ff(j′, k) 6= ∅.
3. If a ∈ Qc

i , a′ ∈ Qc
k and a ∈ Qf

k , for every j ∈ F (a) \ {k}, cf(j, k) = ∅.
4. If {a, a′} ⊆ Qf

i and j = c(a) 6= c(a′) = k, then either Qc
i ∩ ff (j, k) 6= ∅

or cf (j, k) 6= ∅.
Theorem 1. G is the star graph for some graph H if and only if there is a
compatible and differentiable star-partitioned edge clique cover Q of G.
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A set family F=(Fx)x∈X is a containment model of a poset P= (X,P )
if each element x can be assign to a set Fx in such a way that x < y in P
if and only if Fx is a proper subset of Fy. For instance, if a poset admits a
containment model, where each set of the family is an interval of the line,
then we will say it is a containment order of intervals, we will write CI poset
for short.

A poset P is a containment order of paths in a tree, or CPT poset for
short, if admits a containment model where every Mx is a path of a tree T .
The comparability graph of P is the simple graph GP = (X,E) where xy ∈ E
if and only if x < y in P or x > y in P. Two posets are associated if their
comparability graphs are isomorphic.

If P and its dual Pd are CPT we say that P is dually-CPT. If P and every
other poset associated with P is CPT we say that P is strong-CPT. Clearly
every strong-CPT poset is dually-CPT . The strong-CPT and dually-CPT
graphs are the comparability graphs of the strong-CPT and dually-CPT
posets, respectively.

In this work we prove, using the modular decomposition, that dually-
CPT and strong-CPT graph classes are equal. As a corollary we obtain
that the property of being strongly CPT is hereditary.
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Given a graph G = (V,E), a vector of integer requirements R = {R[v] ∈
{0, 1, . . . , deg(v)} : v ∈ V }, and a natural number k, the Vector Domination
Problem aims at determining if there is a set S ⊂ V of size k such that each vertex
v ∈ V either is in S or has at least R[v] neighbors in S.

The class of Split-Indi�erence graphs is formed by the intersection of the class
of Split Graphs and the class of Proper Interval Graphs, that is, satis�es at the
same time the intrinsic restrictions of both graph classes. An interesting for-
mal de�nition of the class of Split-Indi�erence graphs found in the literature was
proposed by [Ortiz et al. 1998] and proves the existence of four di�erent cases of
Split-Indi�erence graphs.

The proposed algorithm for those graphs is based on the theorem proposed by
[Ortiz et al. 1998] since for each possible case a di�erent method is applied. Let
G = (V,E) be a split-indi�erence graph and R the requirement vector, and let S
be the R-dominating set that is being constructed for G.

The �rst case of Split-Indi�erence graph can be trivially solved: initially, the
vertices are ordered by their requirements in ascending order. Next, the algorithm
runs through this order and at each iteration a vertex x ∈ V is analyzed. If
R[x] > |S| then x is included in S. Otherwise, x is dominated by S and the
algorithm stops (all remaining vertices are dominated by S).

For the remaining cases of split-indi�erence graphs, the algorithm performs an
isolated study for each possibility about the presence of the simplicial vertices in
the R-dominating set. That is, for example, in the third case of Split-Indi�erence
graph, there are two simplicial vertices v and w. In that case, the algorithm
analyses four options: a) v /∈ S and w /∈ S; (b) v ∈ S and w /∈ S; (c) v /∈ S
and w ∈ S; (d) v ∈ S and w ∈ S. In each case, the remaining clique (without
simplicial vertices) is solved using the method described for the �rst case.

There is just one case that demands a di�erent approach. On the fourth case of
split-indi�erence graph, the algorithm cannot analyze the case where v and w are
not included in S because when neighbors of v are included in S the requirement
of w is also updated. In other to solve this case, a new approach was developed.
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A graph is dually chordal if it is the clique graph of some chordal graph.
One characterization of dually chordal graphs is by means of the compatible
tree. A spanning tree T of a graph G is a compatible tree if every maximal
clique of G induces a subtree of T . A graph is dually chordal if and only if
it has a compatible tree.

It is not difficult to see that compatible trees can also be characterized
as those spanning trees for which every closed neighborhood of the graph
induces a subtree.

The goal of this presentation is a generalization of the previous properties
by the introduction of the concept of determinant families. Given a dually
chordal graph G and a family F of subsets of V (G), we say that F is deter-
minant if the compatible trees of G are just those spanning trees for which
every F ∈ F induces a subtree of T .

We find conditions to decide whether a family is determinant and we
observe that some determinant families are stronger in the sense that the
condition that T is a spanning tree in the definition can be dropped.

Finally, we apply this theory to generalize some characterizations of dually
chordal graphs, like the ones that involve maximum weight spanning trees
and the one that says that a graph G is dually chordal if and only if G is
clique-Helly and K(G) is chordal.
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In this work, we will consider a graph partitioning problem which aroused
much interest due to research in perfect graphs. It was introduced by Yang &
Yuan [1] as near-bipartite graphs so that a graph can be partitioned on a in-
dependent set (a graph with no edges) and a forest (an acyclic and connected
graph). There is also showed that this problem is NP-complete for general
graph classes even with small degree (at least 4), small diameter (exactly
3)[2] and for perfect graphs.

Our main contribution is a characterization by forbbiden subgraphs, as
stated on Theorem 1, for the class of near-bipartite graphs when restricted
to the P4-tidy graph class (for any induced P4 = H of the graph, there is
at most one vertex out of H that induces a P4 together with another three
vertices in H). This class contains a cycle with 5 vertices (C5) as an induced
subgraph, thus, it is not contained in the class of perfect graphs.
Theorem 1 Let G be a P4-tidy graph. G is a near-bipartite graph if, and
only if, it does not contains any of the graphs K4 (complete graph with 4
vertices), I2 + I2 + I2 (three pairs of trivial vertices totally adjacents) or W5

(a C5 and one vertex totally adjacent to the C5) as an induced subgraph.

References

[1] A. Yang and J. Yuan, “Partition the vertices of a graph into one inde-
pendent set and one acyclic set,” Discrete mathematics, vol. 306, no. 12,
pp. 1207–1216, 2006.

[2] M. Bonamy, K. K. Dabrowski, C. Feghali, M. Johnson, and D. Paulusma,
“Independent feedback vertex sets for graphs of bounded diameter,” In-
formation Processing Letters, vol. 131, pp. 26–32, 2018.

19



Characterizing General Fullerene Graphs1

S. Dantas1 L. Faria2 A. Furtado3 S. Klein4 D. Nicodemos5,∗
1 IME, Universidade Federal Fluminense

2 IME, Universidade Estadual do Rio de Janeiro
3 CEFET-RJ

4 IM/COPPE, Universidade Federal do Rio de Janeiro
5 Colégio Pedro II

Keywords: (3, 4, 6)-Fullerene Graphs, Combinatorial Curvature, Bipartite
Edge Frustration.

Fullerene graphs are 3-connected, planar and cubic graphs. They model
fullerene molecules, which makes them mathematical objects widely studied
and with a high degree of applicability. An inherent characteristic of fullerene
graphs is that they are formed only by pentagonal faces (with combinatorial
curvature equal to one) and hexagonal faces (flat).

From fullerene graphs, we proposed the construction of general fullerene
graphs, containing four edges for each of its vertices and preserving faces of
zero and one curvature. A general fullerene graph is a 3-connected, planar,
4-regular graph whose faces have size 3 or 4 (triangular and quadrangular
faces, respectively). We are interested in investigating the relationship be-
tween these graphs and specific kind of molecules. The degree of stability of
fullerene molecules can be measured by studying the fullerene graph stabil-
ity. Many studies on graph stability refer to the parameter strictly related to
the degree of bipartivity of a graph, that is, how different this graph is from
its corresponding maximum bipartite spanning subgraph. The bipartite edge
problem is to find the smallest number of edges that have to be deleted from
a graph to obtain a bipartite spanning subgraph.

In this work, we determine an upper bound to the bipartite edge problem
for general fullerene graphs by studying its dual problem, which corresponds
to determining the minimum number of edges to be deleted from the dual
graph so that all the degrees of the vertices of the remaining graph are even.

1Partially supported by CNPq and FAPERJ.
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The adjacent vertex-distinguishing total coloring (AVDTC) of a graph G
is a (proper) total coloring such that any two adjacent vertices have distinct
sets of colors appearing on the vertex and its incident edges. The minimum
number of colors required for an adjacent-vertex-distinguishing total coloring
of a graph G is denoted by χat(G). In 2005, Zhang et al. proposed the
AVDTC conjecture: for any simple graph G, χat(G) ≤ ∆(G) + 3. This
conjecture was verified for some special classes of graphs, however, the general
case remains open. In this work, we study the AVDTC Conjecture for Power
of Cycles. A related result, in the context of (proper) total coloring, was
obtained by Campos and Mello [1]. Our results follow below.
Theorem 1. Given an integer n ≥ 6, if G = C2

n, then χat(G) = 6.
Theorem 2. Given two positive integers k and n such that k < bn/2c,
the AVDTC Conjecture holds for G = Ck

n, whenever n is even and n ≡
r(mod k + 1) for r = 0, k − 1, k.

Theorem 1 shows an explicit construction of an AVDTC with six col-
ors. Papaioannou and Raftopoulou [2] proved the AVDTC Conjecture for
4-regular graphs, in particular, they show that χat(C

2
n) ≤ 7. So, we remark

that Theorem 1 gives a tight bound in this particular case.
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An identifying code of a graph is a dominating set that also has the
property that the closed neighborhood of each vertex in the graph has a
distinct intersection with the set. A graph admitting an identifying code
is said to be identifiable. Identifying codes were introduced by Karpovsky,
Chakrabarty and Levitin [2] and a range of applications may be found in the
literature. The problem of finding minimum identifying codes was proven
by Charon, Hudry and Lobstein to be NP-Complete [1], and therefore many
authors have directed their study of identifying codes for restricted classes of
graphs, such as paths, cycles, and some types of products of graphs.

In this work, we study identifying codes in complementary prism graphs.
We give necessary and sufficient conditions for the complementary prism
to be identifiable. We determine the minimum identifying code for specific
graphs and characterize the complementary prisms with small identifying
code numbers. We also present an upper bound for the complementary prism
of connected graphs and prove it is sharp by showing that there are infinitely
many graphs that equals the bound proposed.
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An identifying code of a graph is a dominating set that also has the prop-
erty that the closed neighborhood of each vertex in the graph has a distinct
intersection with the set. Identifying codes were introduced by Karpovsky,
Chakrabarty and Levitin [2] and a range of applications may be found in the
literature. The problem of finding minimum identifying codes was proven
by Charon, Hudry and Lobstein to be NP-Complete [1], and therefore many
authors have directed their study of identifying codes for restricted classes
of graphs, such as paths, cycles, and some types of products of graphs, in-
cluding direct product, lexicographic product, corona product and Cartesian
product.

In this work, we study identifying codes in the Cartesian product of a star
and a path. We determine the size of minimum identifying codes for specific
graphs within this class and we show upper and lower bounds on minimum
identifying codes of such graphs, providing examples that attain the bounds
proposed.
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Um código linear é dito ótimo se, fixados uma distância Hamming d e um
comprimento n, possui o maior número de palavras M posśıvel. O problema
de decodificação de um código linear geral é NP-completo [1]. Os códigos
lineares ótimos para distância 3 são exatamente os códigos Hamming e os
códigos Hamming encurtados. Embora esses resultados sejam antigos, não
identificamos na literatura algoritmos eficientes para decodificação de tais
códigos. O que se encontra, em geral, são códigos que procuram maximizar
o valor de d para um dado n. Porém, seus algoritmos de decodificação não
são adequados para valores grandes de n. Por exemplo, o melhor algoritmo
de decodificação para os códigos Reed-Solomon tem complexidade O(n2),
para os códigos Goppa, O(n3). O algoritmo básico de decodificação de um
código linear, a decodificação por śındrome, tem complexidade O(n 2n−k),
onde k é a dimensão do código. Assim, em certas circunstâncias, pode ser
mais vantajoso abrir mão de uma maior detecção de erros em nome de uma
decodificação mais rápida, principalmente em sistemas de transmissão digital
em que a relação sinal-rúıdo é alta. Desenvolvemos duas famı́lias de códigos
Hamming encurtados, denotadas por Gham(n) e BP (n) e apresentamos seus
processos de codificação e decodificação de complexidade O(n).
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A biclique of a graph is a vertex set that induces a maximal complete
bipartite subgraph. The biclique graph of a graph G, denoted by KB(G),
is the intersection graph of the bicliques of G. The biclique graph was in-
troduced by Groshaus and Szwarcfiter [1], based on the concept of clique
graphs. They gave a characterization of biclique graphs but it did not lead
to a polynomial time recognition algorithm. Since then, the time complexity
of the problem of recognizing biclique graphs remains open.

In this work we prove that every biclique graph of a K3-free graph is the
square of some graph. This result gives a tool for studying other classes of
biclique graphs.

Let P = XP ∪YP and Q = XQ ∪YQ be two bicliques of a graph G, where
XP ∩ YQ = ∅ and XQ ∩ YP = ∅. We say that P and Q are mutually included
if XP ⊂ XQ and YQ ⊂ YP . Given a graph G, define the graph KBm(G) as
the graph with the bicliques of G as its vertex set and {P,Q} is an edge if
and only if P and Q are mutually included. Note that KBm(G) ⊆ KB(G).

We prove that for a K3-free graph G, KB(G) = (KBm(G))2. And then,
KB(K3-free) ⊆ (G)2, where G is the class of all graphs.
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Fullerene graphs are mathematical models for molecules composed exclu-
sively of carbon atoms, discovered experimentally in the early 1980s. Many
parameters associated to these graphs have been discussed, trying to de-
scribe the stability of the fullerenes molecule. Formally, fullerene graphs are
3-connected, cubic, planar graphs with pentagonal and hexagonal faces.

Andova and Skrekovski (2012) conjectured a lower bound for the diame-
ter of fullerene graphs. The relevance of this conjecture consists in the fact
that it was conceived from perfectly spherical fullerene graphs which gives
these graphs symmetry and, theoretically, high stability. We know that the
curvature of fullerene graphs is given by their pentagonal faces, in this way
fullerene icosahedral graphs preserve the same distance between their pen-
tagonal faces. This distance between its pentagonal faces is characterized by
two non-negative parameters i and j. An icosahedral fullerene graph G− i, j
is a graph in which its pentagonal (nearest) faces are i+ j-units.

It is known that the Andova-Skrekovski conjecture is valid for the cases
when 0 = i < j, 0 < i = j and j > 11i

2
. In order to contribute with the study

of this problem, in this work we verify the conjecture for the cases j = i+ 1.
Moreover, we present a lower bound for the diameter.
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[1] Andova, V. and Škrekovski, R. Diameter of Fullerene Graphs with Full Icosahedral
Symmetry, MATCH Communications in Mathematical and Computer Chemistry 70
(2012) 205–220.

†Partially supported by CAPES, CNPq and FAPERJ.

26



Some forbidden structures for the near-bipar-

tition problem on distance-hereditary graphs

Rodolfo Oliveira ∗ Raquel Bravo
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Interesting aspects of the near-bipartition problem of the class of distance-
hereditary graphs are tackled in this study. Such partition problem was
formulated by Yang & Yuan [3] as follows. The near-bipartition of a graph
G consists in the finding of a partition (S,F) for the vertex set V (G), in
which S is a stable set and F induces an acyclic subgraph. Further, the
authors in [1] demonstrated the problem is NP-complete for graphs with
diameter equals to 3, degrees of 4 at most, and perfect graphs. In a corre-
sponding way, we have verified some structures of distance-hereditary graphs
do not admit partitions (S,F) for some candidates of vertices belonging to
S. Therefore, we are able to describe unlimited number forbidden distance-
hereditary subgraphs not having the partitions (S,F). Our final contribution
refers to establishing a sufficient condition, which uses the decomposition tree
characterization as in [2], for ensuring the (S,F) partitioning of the subclass
of distance-hereditary graphs.
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Um grafo é bem coberto quando todos os seus conjuntos independentes
maximais possuem a mesma cardinalidade. O conceito de grafos bem cober-
tos foi introduzido em 1970 por M. Plummer [4]. Sabe-se que obter o número
de independência de um grafo arbitrário é um problema NP-completo, en-
tretanto, quando restrito a grafos bem cobertos, o problema é polinomial.
Chvátal e Slater [3] mostraram que o reconhecimento de grafos bem cobertos
é coNP-completo. Um grafo é (k, `) se seu conjunto de vértices admite uma
partição em k conjuntos independentes e ` cliques. Brandstädt [2] provou
que o reconhecimento de grafos (k, `) é polinomial quando k ≤ 2 e ` ≤ 2, e
NP-completo caso contrário. Alves et al. [1] provaram que o reconhecimento
de um grafo-(k, `) bem coberto para as partições (1, 0), (0, 1), (2, 0), (0, 2),
(1, 1) e (1, 2) é polinomial, e que é dif́ıcil para todas as outras. Neste trabalho,
caracterizamos os grafos-(1, 2) bem cobertos, isto é, grafos bem cobertos que
admitem uma partição em um conjunto independente e duas cliques.
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A total coloring of a graph G is a function which assigns colors to the
vertices and edges of G, so that there are no conflict between adjacent ele-
ments. The total chromatic number of a graph G, denoted by χT (G), is the
minimum number of colors needed to totally color G. A well-known bound is
χT (G) ≥ ∆(G) + 1, where ∆(G) represents the maximum degree of a vertex
in G. The total coloring conjecture (TCC) was proposed independently by
Behzad (1967) and Vizing (1964) and states that, for every simple graph G,
χT (G) ≤ ∆(G) + 2. This conjecture remains open to regular, chordal and
power of cycle graphs. If χT (G) = ∆(G) + 1, then G is said to be type 1. If
χT (G) = ∆(G) + 2, then G is said to be type 2. Deciding if a graph is type 1
is a NP-complete problem, and remains NP-complete even if G is a bipartite
regular graph.

The power of cycle graph Ck
n has Cn as spanning subgraph and additional

edges between vertices at distance at most k in Cn.
The TCC was proved to Ck

n, when n is even [1]. For fixed value of k, the
TCC was proved to C3

n and C4
n, and for C2

n, the total chromatic number is
established: C2

7 is type 2, while C2
n is type 1 otherwise [2].

In the present work, we prove that, except for the complete graphs K4

and K6, all power of cycle graphs C3
n with even n are type 1. Our proof is

constructive, in the sense that we develop an algorithm that optimally totally
color power of graphs C3

n with even n.
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A total coloring of a graph G is an assignment of colors to the elements of
G, vertices and edges, such that every pair of adjacent or incident elements
have distinct colors. The minimum number of colors for a total coloring of
G is the total chromatic number of G, χ′′(G). Similarly, an edge (vertex)
coloring of a graph G is an assignment of colors to the edges (vertices) of G
such that any two adjacent edges (vertices) have distinct colors.

A color class c is composed by the elements ofG with color c. An equitable
coloring of G is a coloring such that the cardinality of any two color classes
differs by at most one. The least number of colors for an equitable total
coloring of a graph G is the equitable total chromatic number of G, χ′′

e(G). De
Werra shows that if there is an edge coloring of graph G using k colors, then
G also has an equitable edge coloring using k colors. Hajnal and Szemerédi
stated that a graph G has an equitable vertex coloring using k colors for each
k ≥ ∆(G) + 1. Hung-Lin Fu conjectured that for every graph G, there is an
equitable total coloring using k colors for each k ≥ max {χ′′(G),∆(G) + 2}.

A universal vertex v is a vertex of G with degree |V (G)|−1. Considering
a graph G with at least one universal vertex, we show that χ′′

e(G) = ∆(G)+1

when |V (G)| is odd or when |V (G)| is even and |E(G)| ≥ |V (G)|
2

, otherwise
we show an equitable total coloring of G using ∆(G) + 2 colors. Therefore,
the Conjecture of Fu holds for graphs with universal vertex.
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The Total Colouring Conjecture states that every (simple) graph G =
(V,E) with maximum degree ∆ admits a (∆ + 2)-total colouring. This con-
jecture was proposed independently by M. Behzad and V. G. Vizing 50 years
ago and, since then, some upper bounds for χ′′(G) (the total chromatic num-
ber of G) have been found, being ∆ + 1026 the only one of the form ∆ + C
for a fixed constant C, a result by M. Molloy and B. Reed of 1998.

This work presents a polynomial-time heuristic for constructing edge by
edge a (∆ + 2)-total colouring of G over an initial (∆ + 2)-vertex-colouring
(recall that (∆ + 1)-vertex-colourings can be greedily constructed). Our
algorithm is based on a recolouring procedure similar to Vizing’s recolouring
procedure for edge-colouring. We show that if there is some uv ∈ E such that
G − uv has a (∆ + 2)-total colouring ϕ and there is a complete recolouring
fan for uv, as we define in the sequel, then G is also (∆+2)-total colourable.

A recolouring fan for uv is a sequence v0, . . . , vk of distinct neighbours of
u such that v0 = v and, for all i ∈ {0, . . . , k− 1}, the colour αi := ϕ(uvi+1) is
missing at vi, i.e. it colours no element of S(vi) := ∂G(vi)∪{vi}. Let C be the
set of the ∆+ 2 colours used. The fan is complete if either (i) there is some
β ∈ C missing at both u and vk, or (ii) for some α ∈ C missing at vk and
some β ∈ C missing at u, the α-coloured element of S(u) and the β-coloured
element of S(vk) are not in the same component C of the subgraph of the
total graph of G induced by the elements coloured with α or β (the total
graph of G is the graph whose vertex set is V (G) ∪ E(G) and whose edges
represent the adjacencies and incidences between the elements of G). If (ii)
holds, exchanging the colours of the elements of C brings us to (i).

Since our recolouring procedure uses ∆+2 colours, we aim to investigate
graph classes in which it may lead to novel results on total colouring. It
would also be interesting to verify how our procedure behaves empirically.
This work was partially supported by CNPq (428941/2016-8) and UFFS (23205.001243/2016-30).
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Let G be a simple graph. A k-coloring of G is a function ψ : V (G) → N
such that |ψ(V (G))| = k and ψ(u) 6= ψ(v) whenever uv ∈ E(G). We say that
u ∈ V (G) is a b-vertex in ψ (of color ψ(u)) if for every c ∈ ψ(V (G))\{ψ(u)},
there exists a vertex v adjacent to u such that ψ(v) = c. If c ∈ ψ(V (G)) is a
color class that has no b-vertex on ψ, then we can separately change the color
of each vertex w in ψ−1(c) for a color in ψ(V (G)) \ {c} and obtain a proper
coloring with fewer colors. If ψ is a coloring such that we cannot apply this al-
gorithm to decrease the amount of used colors, then every color class contains
a b-vertex. Such coloring is called a b-coloring. As the coloring problem is
NP-complete, not always a b-coloring uses only χ(G) colors. The b-spectrum
of G, denoted by Sb(G), is the set of integers k such that G has a b-coloring
with k colors. The b-chromatic number of G, denoted by b(G), is the max-
imum element of Sb(G). We say that G is b-continuous if its b-spectrum
contains all integers from χ(G) to b(G), i.e., Sb(G) = [χ(G), b(G)] ∩ Z. An
infinite number of graphs that are not b-continuous is known. It is also
known that for each subset S ⊂ N− {1}, there exists a graph GS such that
Sb(GS) = S. Several results suggest a strong link between b-colorings and
high girth. It has been proven that if G has girth at least 7, then G has
b-chromatic number at least m(G) − 1. More recently it has been proven
that graphs with girth at least 10 are b-continuous. In this article, we prove
that if G has girth at least 8, then G is b-continuous and that if G has girth
at least 7, then [2χ(G), b(G)] ∩ Z ⊂ Sb(G).

Acknowledgements: Work supported by CNPq grant 401519/2016-3.
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We say that a bipartite graph without cycles of length multiple of 4
is a BC4k-free graphs. In this work we study the null space of BC4k-free
graphs, and its relation to structural properties. We decompose them into
two different types of graphs: N -graphs and S-graphs. N -graphs are graphs
with a perfect matching (the order of the graph is twice its matching number).
S-graphs are graphs with a unique maximum independent set. We relate the
independence number and the matching number of a BC4k-free graph with
its N -graph and its S-graph. Among other results, we show that the rank
of a BC4k-free graph is twice its matching number, generalizing a result for
trees due to Bevis et al [1]. About maximum independent sets, we show that
the intersection of all maximum independent sets of a BC4k-free bipartite
graph coincides with the support of its null space.

References
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Let G = (V,E) be a connected simple graph with |V | ≥ 2. A gap-[k]-edge-
labelling of G is a pair (π, cπ) where π : E → {1, . . . , k} is an edge-labelling
of G and cπ : V → {0, . . . , k} is a proper vertex-colouring of G such that, for
every v ∈ V , colour cπ(v) is: (i) 1 if d(v) = 1; and (ii) maxuv∈E{π(uv)} −
minuv∈E{π(uv)} if d(v) ≥ 2. Colour cπ is induced by the largest gap among
the labels of its incident edges. Analogously, a gap-[k]-vertex-labelling of G is
a pair (π, cπ), π : V → {1, . . . , k} and cπ, a proper vertex-colouring of G, with
cπ(v) induced by the largest gap among the labels of N(v) when d(v) ≥ 2, and
1, otherwise. The least k for which G admits a gap-[k]-edge-labelling (gap-
[k]-vertex-labelling) is denoted by χg

E
(G) (χg

V
(G)). Gap-[k]-edge-labellings

were proposed, in 2012, by Tahraoui, Duchêne and Kheddouci. Since then,
several works have both established general bounds for χg

E
(G) and determined

it for classes of graphs. Brandt, Moran, Nepal, Pfender and Sigler (2016)
proved that χg

E
(G) ∈ {χ(G), χ(G) + 1} unless G is a star, in which case

χg
E

(G) = 1. The vertex variant was introduced by Dehghan, Sadeghi and
Ahadi in 2013. In their work, the authors study the algorithmic complexity of
decision problems associated with these labellings, proving that: determining
whether graphs admit gap-[k]-edge-labellings and gap-[k]-vertex-labellings is
NP-complete when k ≥ 3. For k = 2, both variants are NP-complete for
bipartite graphs. However, there exist some classes of graphs for which these
problems are polynomially solvable. Particularly for planar bipartite graphs
with δ(G) ≥ 2, the edge variant is in P, whereas if degree-one vertices are
admitted, the problem remains NP-complete. This implies that degree-one
vertices may play an important role in the computational complexity of gap-
labellings. In this context, Dehghan et al. determined χg

V
(G) for trees. Our

work expands this result for unicyclic graphs, which are connected graphs
with |V | = |E|. We studied both the edge and vertex variants of proper gap-
labellings for unicyclic graphs. For this family, we determined that χg

V
(G) =

χ(G). Moreover, if the length of the cycle is odd, then χg
E

(G) = 3.
Supported by FAPESP grant 2015/11937-9, and CNPq grants 425340/2016-3 and 308689/2017-8.
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By the celebrated Vizing’s Theorem of 1964, the chromatic index of a
graph G with maximum degree ∆, denoted χ′(G), is either ∆ or ∆ + 1 (in
which case G is Class 1 or Class 2 , respectively) and a (∆+1)-edge-colouring
of G can be computed in polynomial time. However, deciding if a given graph
is Class 1 is an NP-complete problem, as shown by Holyer in 1981.

It is clear that χ′(G) is the maximum amongst the chromatic indices of
the connected components of the graph G. Further, we show that χ′(G)
is the maximum amongst the degrees of the articulation points of G and
the chromatic indices of its biconnected components. For this, it suffices to
prove that if G1 and G2 are any two graphs with V (G1)∩V (G2) = {u}, then
χ′(G1 ∪ G2) = max{χ′(G1), χ

′(G2), dG1∪G2(u)} =: k. The proof follows by
taking k-edge-colourings for G1 and G2 using the same colour set C and then
permuting C on G2 so that the colours of the edges incident to u in G1 ∪G2

become all distinct.
Our result yields a decomposition heuristic for edge-colouring algorithms

and implies that an optimal edge-colouring can be computed in polynomial
time for graphs with m edges and O(logm)-size biconnected components,
using the algorithm by Björklund and Husfeldt of 2009 which gives an op-
timal edge-colouring of any graph with m edges in O(2mmO(1)) time. This
motivates further investigation on phase diagrams for the size of the bicon-
nected components in random graph models which capture the aspects of
real-world networks. We also encourage future works to extend our proof
for the case wherein |V (G1) ∩ V (G2)| ≥ 2, since this may lead to results on
edge-colouring indifference graphs, for which only partial results are known,
as those by Figueiredo, Meidanis, Mello, and Ortiz of 2003.

This work was partially supported by CNPq (428941/2016-8) and UFFS (23205.001243/2016-30).
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An (r,`)-graph is a graph that can be partitioned into r independent sets
and ` cliques; In the k-Colorability problem we are asked to determine
whether a given graph G admits a vertex coloring using at most k colors such
that adjacent vertices have different colors.

In this work, we describe a Poly vs NP-complete dichotomy of this prob-
lem regarding to the parameter r and ` of (r, `)-graphs, determining the
boundaries of the NP-completenes for such a class. In addition, we ana-
lyze the complexity of the problem on (r, `)-graphs under the parametrized
complexity perspective.

A parameterized problem (Π, k) is said fixed-parameter tractable (FPT)
if it can be solved in time f(k)×nO(1), where f is an arbitrary function, and
n is the size of the input.

Using a reduction from k-Colourability on (r,`)-graph to List-
Coloring as strategy, we are able to discovery that given a (2,1)-partition
of the input graph G, to finding an optimal coloring of G is: W[1]-hard when
parametrized by the size of the smallest independet part; Para-NP-complete
when parametrized by the size of the complete part; FPT when parametrized
by the number of vertices having no neighbors in the complete part; and FPT
when the size of the complete part and the size of the smallest independent
part are agregated parameters.
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A simple graph G is planar if it can be embedded in the plane, i.e., it
can be drawn on the plane such that no edges cross each other. There are
many relaxations of planarity, i.e. graph invariants that measure how close
a graph is to a planar graph. Examples of relaxations of planarity include:
the crossing number cr(G) (the minimum number of edge crossings in any
drawing of G in the plane), the skewness µ(G) (the minimum number of edges
whose removal makes the graph planar), the genus γ(G) (the minimum genus
of the orientable surface on which G is embeddable), and the thickness θ(G)
(the minimum number of planar subgraphs of G whose union is G.)

A conjecture by Albertson states that if χ(G) ≥ n then cr(G) ≥ cr(Kn),
where χ(G) is the chromatic number of G. This conjecture is still open for
n > 16. In this paper we consider the statements corresponding to this
conjecture where the crossing number of G is replaced with other relaxations
of planarity such as µ(G), γ(G), and θ(G).

First we show that for every simple graph G if χ(G) ≥ n then µ(G) ≥
µ(Kn). The statement is equivalent to the Four Color Theorem when n = 5,
and is equivalent to a generalization of the Five Color Theorem by Kainen
when n = 6. We provide an elementary proof when n ≥ 7.

Then we show that for every simple graph G if χ(G) ≥ n then γ(G) ≥
γ(Kn).

Finally we consider the corresponding statement: if χ(G) ≥ n then
θ(G) ≥ θ(Kn). We show that this statement is true for infinitely many
values of n, but not for all n. The Sulanke graph K11 − C5 is a counterex-
ample when n = 9. When n = 10, 11, or 12, determining the truth value of
this statement is equivalent to Ringel’s famous Earth-Moon problem.
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Seja
−→
G = (V,A) um grafo orientado,

−−−→
(x, y),

−−→
(z, t) ∈ A(

−→
G), e C um

conjunto com k cores. Uma função φ de C para V (
−→
G) tal que φ(x) é diferente

de φ(y) e se φ(x) = φ(t) então φ(y) é diferente de φ(z) é chamada de k-

coloração orientada. O número cromático orientado χo(
−→
G) é o menor k tal

que
−→
G admite uma k-coloração orientada.

O problema da k-coloração orientada pode ser visto como um homomor-
fismo de

−→
G em um grafo

−→
T com k vértices, podemos chamar o problema de

colorir
−→
G com

−→
T de problema da

−→
T -coloração. Bang-Jensen, et al. [1] de-

monstrou que o problema
−→
T -coloração é polinomial quando

−→
T é um torneio

aćıclico ou que contém um único ciclo orientado.
Neste trabalho demonstramos que um grafo aćıclico que não contém o

caminho
−−→
Pn+1 como subgrafo pode ser colorido pelo torneio transitivo

−→
Tn

com n vértices e que um grafo
−→
G que contém um único ciclo orientado de

tamanho múltiplo de 3 pode ser colorido por um torneio que contém um
único ciclo orientado. A partir destes sub-casos obtemos algoritmos para
resolver todos casos em que o problema da

−→
T -coloração é polinomial.

Apresentamos algoritmos polinomiais para os casos em que o χo(
−→
G) ≤ 3.

Demonstramos que um grafo
−→
G tem χo(

−→
G) = 2 se e somente ∀x ∈ V (

−→
G), x é

um vértice fonte ou x é um vértice sumidouro. Para grafos que tem χo(
−→
G) ≥

4 apresentamos uma relação do número de torneios em que o problema da−→
T -coloração é polinomial com o número de torneios em que o problema é
NP-completo. Por fim apresentamos um algoritmo para a geração de torneios
que contém apenas um ciclo orientado.

Referências
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A k-equitable total coloring is an assignment of colors to the edges and
vertices of a graph such that adjacent and incident elements receive different
colors and the difference between the cardinalities of any two color classes is
at most one. The smallest integer k for which a graph G has a k-equitable
total coloring is called the equitable total chromatic number of G and it is
denoted by χ′′

e(G). A graph is said to be complete tripartite if its vertex set
can be partitioned into 3 sets such that no two vertices within the same part
are adjacent, and there is an edge between any two vertices of different parts
of the partition. If each part of the partition has the same order then it is
said to be balanced. Let ∆ be the maximum degree of a graph. The Equitable
Total Coloring Conjecture (ETCC) due to Wang [1] states that every simple
graph G has ∆ + 1 ≤ χ′′

e(G) ≤ ∆ + 2. To contribute with the ETCC,
we investigate equitable total colorings of complete tripartite non balanced
graphs. Such graphs are denoted by Ka,b,c meaning that the parts of the
partition of the vertex set have, respectively, a, b and c vertices. We verify
the ETCC for the following classes of complete tripartite (non balanced)
graphs: Ka,b,c with a < b = c; a = b and c ≥ b2 if b ̸= 1 or c ≥ 2 if b = 1; and
a < b and c ≥ b2 has χ′′

e = ∆+ 1.
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Departamento de Matemática, Universidade Federal do Ceará
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Given a proper coloring f of a graph G, a b-vertex in f is a vertex that
is adjacent to every color class but its own, and f is a fall-coloring if every
vertex is a b-vertex. The fall-spectrum of G is the set F(G) of all values
k for which G admits a fall-coloring with k colors. Observe that a graph
not always have such a coloring, i.e., F(G) can be empty; for instance, one
can easily see that if χ(G) > δ(G) + 1, then F(G) = ∅. These concepts
were introduced by Dunbar et. al. in 2000, where they prove that deciding
whether F(G) 6= ∅ is NP-complete.
Some authors have found that some subclasses of perfect graphs have the
property that: (*) F(G) 6= ∅ if and only if χ(G) = δ(G)+1. This has led Kaul
and Mitilos to conjecture that (*) holds for every perfect graph. We prove
that this is not true by showing a chordal graph on which (*) does not hold.
Note that, because δ(G) + 1 is also an upper bound for the values in F(G),
we get that (*) implies F(G) ⊆ {χ(G)}. This led us to the question about
which kind of graphs have small fall-chromatic spectra, i.e., which graphs
have the property F(G) ⊆ {χ(G)}. We prove that: 1. F(G) ⊆ {χ(G)}
for chordal graphs and P4-sparse graphs; 2. deciding whether F(G) 6= ∅
is NP-complete for chordal graphs; and 3. deciding whether |F(G)| > 1
is NP-complete for bipartite graphs (deciding whether F(G) 6= ∅ is trivial
for bipartite graphs). The NP-completeness results discard the possibility
of getting a characterization for these graphs. This is why we investigate
perfectness aspects. A graph G is all-defined fall-perfect if F(H) = {χ(H)}
for every induced subgraphH ofG; and it is fall-perfect if F(H) ⊆ {χ(G)} for
every induced subgraph H of G. We characterize the all-defined fall-perfect
graphs and the bipartite fall-perfect graphs.

Aknowledgement: Work supported by CNPq grant 401519/2016-3.

40



Coloring Game: characterization of a

(3, 4∗)-caterpillar†

S. Dantas1 C.M.H. de Figueiredo2 A. Furtado3,∗

S. Gravier4
1 IME, Universidade Federal Fluminense.

2 COPPE, Universidade Federal do Rio de Janeiro.
3 CEFET-RJ.

4 CNRS, Université Grenoble Alpes.

Keywords: Coloring Game; Game Chromatic Number; Caterpillar

The coloring game was conceived by Brams, firstly published in 1981 by
Gardner, and reinvented in 1991 by Bodlaender, in the context of graphs. Al-
ice and Bob take turns properly coloring the vertices of a graph, Alice trying
to minimize the number of colors used, while Bob tries to maximize them.
The game chromatic number is the smallest number of colors that ensures
that the graph can be properly colored despite Bob’s intention. We denote
by χa

g(G) (or simply χg(G)) the game chromatic number of G when Alice
starts the game, and χb

g(G) when Bob does it. It is known that χg(F ) ≤ 4,
for F forest and it is an open problem to characterize which forests have
χg(F ) = 3 or 4. In 2016, Furtado et al. contributed to this study by consid-
ering a special tree called caterpillar. They studied χg of three infinite classes
of caterpillars: caterpillars with a maximum degree 3, without vertices of de-
gree 2, and without vertices of degree 3. The only remaining case to conclude
the study of game chromatic number of caterpillars is the case with vertices
of degree 1, 2, 3 and at least 4. We contribute to this study by characterizing
(3, 4∗)-caterpillars. We say that H is a (3, 4∗)-caterpillar when χa

g(H) = 3
and H is minimal with respect to χb

g(H) = 4. We conclude the character-
ization of (3, 4∗)-caterpillars with vertices of degree 1, 2, 3 and at least 4.
This study is important because having two induced (3, 4∗)-subcaterpillars
is a sufficient condition for any caterpillar H to have χg(H) = 4.

†Partially supported by CAPES, CNPq and FAPERJ.
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A classical result in Graph Theory is Tutte’s Perfect Matching Theorem
which characterizes graphs admitting a perfect matching.

We present a generalization of this result to triples (V,E, c), where (V,E)
is a graph and c is a function from V to the set of non negative integers. We
call such triples (vertex) colored graphs. Tutte’s Theorem will be the special
case when every edge uv ∈ E is monochromatic, that is, when c(u) = c(v).
Equivalently, whenever c is constant in each connected component of (V,E).

We define a perfect matching of a colored graph (V,E, c) to be a function
m from E to the set of nonnegative integers such that, for each v ∈ V , the
set {uv ∈ E : m(uv) = c(v)} is a singleton.

We prove that a colored graph (V,E, c) has a perfect matching if and
only if for each S ⊆ V and each F ⊆ E of non-monochromatic edges, the
graph (V,E) \ (S ∪ F ) has at most |S ∪ F | connected components with an
odd number of vertices and such that each non-monochromatic edge incident
to some vertex in the component belongs to F .

1Supported by Conicyt-PIA Program AFB 170001

42



Alguns Resultados em Coloração Orientada e

Clique Coloração Orientada 1

*Hebert Coelho a,2 Luerbio Faria b,2 Sylvain Gravier c,2

Sulamita Klein d,2

a INF, Universidade Federal de Goiás, GO, Brazil
b DCC/UERJ, Rio de Janeiro, RJ, Brasil

c Institut Fourier, Maths à Modeler team, CNRS - UJF, St M. d’Hères, France.

d IM and COPPE-Sistemas, UFRJ, Rio de Janeiro, RJ, Brasil

Palavras Chave: Coloração orientada, clique coloração orientada.

Uma k-coloração orientada de um grafo orientado ~G = (V, ~E) é uma
partição de V em k subconjuntos, tal que não existem dois vértices adjacentes
pertencentes ao mesmo subconjunto, e todos os arcos entre dois subconjuntos
tem a mesma orientação. Um homomorfismo de ~G1 em ~G2 corresponde a
uma k-coloração orientada de ~G1 se ~G2 tem k vértices, ~G2 é chamado de grafo
de cor para ~G1. O número cromático orientado χo( ~G) é o menor inteiro k,

tal que ~G admita uma k-coloração orientada. Um resumo pode ser visto em
Sopena [1]. Neste trabalho apresentamos o único torneio com 5 vértices que
é subgrafo de qualquer grafo de cor para grafos planares e cúbicos, também
provamos que χo(G ∪ C) ≤ 5, onde χo(G) ≤ 4 e C é um ciclo.

Além disso, apresentamos a definição do número clique cromático orien-
tado ~κ(G). Provamos que se todo hipergrafo orientado ~H(G) é um grafo
orientado, então ~κ(G) = χo(G). Além disso, provamos que ~κ(Kn) = 2 e
~κ(Cn) = χo(Cn). Por fim, apresentamos a conjectura que ~κ(G) ≤ χo(G).
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Let G be a finite, simple, and undirected graph and let S be a set of
vertices of G. In the geodetic convexity, a set of vertices S of a graph G is
convex if all vertices belonging to any shortest path between two vertices of
S lie in S. The cardinality con(G) of a maximum proper convex set S of G
is the convexity number of G. The complementary prism GG of a graph G
arises from the disjoint union of the graph G and G by adding the edges of a
perfect matching between the corresponding vertices of G and G. Dourado
et al. [1] proved that the decision problem related to the convexity number
is NP-complete even restricted to bipartite graphs, but it can be computed
in linear time for cographs. Motivated by [1], we determine the convexity
number for complementary prisms of disconnected graphs and of cographs,
and we show lower bounds of con(GG) when the diameter of G is at most
two.
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A knot in a directed graph G is strongly connected subgraph Q of G
with size at least two, such that no vertex in V (Q) is in-neighbor of a ver-
tex in V (G) \ V (Q). Knots are very important graph structure in the net-
worked computation field, because they characterize deadlock occurrences
into a classical distributed computation model, so-called OR-model. Given
a directed graph G and a positive integer k, we present parameterized com-
plexity analysis of the Knot-free Vertex Deletion (KFVD) problem,
which consists of determining whether G has a subset S ⊆ V (G) of size at
most k such that G[V \S] contains no knot. KFVD is a graph problem with
natural applications in deadlock resolution area, and it is close related to Di-
rected Feedback Vertex Set. It is known that KFVD is NP-complete
on planar graphs with bounded degree, but it polynomial time solvable on
subcubic graphs [?].

In this paper we proof that: KFVD is W[1]-hard when parameterized by
the size of the solution; it can be solved in 2k logϕnO(1)-time, but assuming
SETH it cannot be solved in (2− ε)k logϕnO(1)-time, where ϕ is the size of the
largest strongly connected subgraph of G; it can be solved in 2φnO(1)-time,
but assuming ETH it cannot be solved in 2O(φ)nO(1)-time, where φ is the
number of vertices with out-degree at most k; unless PH = Σ3

p, KFVS do
not admit polynomial kernel even when ϕ = 2 and k is the parameter.
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1 Universidade Federal Fluminense

Keywords: Clique; Independent Set; Parameterized Complexity.

Introduced in the last decade by Haynes et al. [2], the complementary
prism GḠ of the graph G is a variation of the well known prism. It arises from
the disjoint union of the graphG and its complement Ḡ by adding the edges of
a perfect matching joining pairs of corresponding vertices ofG and Ḡ. Despite
being rather new graph class, classical graph properties such as domination,
independence, cliques among others were studied and a polynomial time
recognition algorithm was presented. Duarte et al. [1], have shown that
given complementary prism GḠ and a integer k, it is NP-complete to decide
whether GḠ has the following property: a clique of order k (denoted by k-
Clique); a independent set of order k (denoted by k-Independent Set).

In this work, we studied the complexity of the k-Clique and k-
Independent Set problems in complementary prisms from a parame-
terized complexity point of view. First, we proved that k-Clique and
k-Independent Set have a kernel and therefore are Fixed-Parameter
Tractable (FPT). Then, we showed that unless NP ⊆ coNP/poly, k-Clique
and k-Independent Set do not admit polynomial kernel.
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One fundamental issue in applying algorithmic results in practice arises from
the fact that the majority of computational problems are typically defined
as decision problems, asking e.g. ‘does the input contain structure X’? Prac-
titioners are rarely satisfied with simple Yes/No answers to such questions
and even a single solution X∗ might not give enough insight into the instance
at hand. Rather, one might want to find a ‘small representative subset of
structures X in the input’, a goal whose formulation may seem mathemati-
cally inconvenient. However, a set of solutions that are pairwise very similar
does not provide much more insight than a single solution. In other words,
there is a metric on the solution space of a problem such that in a represen-
tative subset of the solutions, the members should be pairwise far apart. Via
the Vertex Cover problem, which is the parametric dual to clique, we
show that such problems can admit efficient parameterized algorithms.

Formally, let δ be a metric on the space of all vertex covers of graphs.
In the δ-Diverse Vertex Covers problem, given an n-vertex graph G,
and three integers k, r, and d, we want to compute a set S of r distinct
vertex covers of G of size at most k such that for each pair of distinct vertex
covers S, T ∈ S, δ(S, T ) ≥ d. When r = 1, this problem corresponds
to the NP-complete Vertex Cover problem. We show that if δ is the
Hamming distance of the indicator vectors associated with the vertex covers,
then the corresponding Hamming-Diverse Vertex Covers problem is
fixed-parameter tractable when parameterized by r + k, i.e. solvable in time
f(r, k) · nc for some computable function f and constant c.

The δ-Diverse Cliques problem may be investigated using parametric
duality: To obtain a clique in the input graph G, one computes a vertex
cover X in the complement graph G; V (G) \X is a clique in G.
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Width parameters in graphs are an estimation to how similar a graph
is to a typical structure. Many hard problems can be efficiently solved on
graphs with bounded width parameters by making use of classical algorithm
construction approaches, like dynamic programming, exploiting the structure
given by the width restrictions on the graph. In this work, we focus on the
tree-width of directed graphs.

Robertson and Seymour showed that every undirected graph of tree-width
at least f(k) contains a k×k grid minor [2]. Approaches based on this result
and on width parameters achieved great success in the design of algorithms
for problems on undirected graphs. For directed graphs, an analogous defi-
nition for tree-width was proposed in [3] and a result analogous to the grid
theorem was proved in [1].

By improving on a result from [3], we give an FPT algorithm, with pa-
rameter k, which decides whether a directed graph has tree-width at most
3k − 2 or admits a haven (as defined in [3]) of order k.
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Let G = (V,E) be a graph. A set S is P3-convex (resp. P ∗3-convex ) if
there is no vertex outside S having two neighbors in S (resp. there is no vertex
outside S with two non-adjacent neighbors in S). A set of vertices S ⊆ V
is P3-Helly independent (resp. P ∗3-Helly independent) if there is no vertex
v such that v ∈ 〈S \ {w}〉 for every w ∈ S, where 〈S〉 is the smallest convex
set containing S. The maximum cardinality of a P3-Helly independent (resp.
P ∗3-Helly independent) of a graph G is denoted by hP3(G) (resp. hP ∗

3(G)).
There are several works related to P3-convexities [1, 2]. The vp3hc (resp.

vsp3hc) problem receives a graph G and an integer k and asks if hP3(G) ≥
k (resp. hP ∗

3(G) ≥ k). The ep3hc and esp3hc problems are the edge
counterparts of the previous problems using the parameters h′P3

, and h′P ∗
3
.

In this work we present bounds for hP3 , hP ∗
3 , h

′
P3

, and h′P ∗
3

relating them
to other well-known graph-theoretic parameters. Moreover, we show efficient
solutions for these problems restricted to graph classes with few induced P4.
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A set of vertices S of a graph G is P3-convex if every vertex of G lies
on a path with three vertices between two not necessarily distinct vertices
in S. The P3-convex hull of a set of vertices S is the smallest convex set
containing S. The P3-hull number h(G) of a graph G is the smallest cardi-
nality of a set of vertices whose convex hull is the vertex set of G. In this
paper we establish some limits for P3-hull number in the P3 convexity for
strongly regular graphs. A graph G is strongly regular if is k-regular and
there are integers b and c such that every two adjacent vertices have b com-
mon neighbours and two non-adjacent vertices have c common neighbours.
For disconnected strongly regular graph, if ω(G) is a number of connected

components of G, h(G) ≤ 2.ω(G), in connected graphs h(G) ≤
⌈

k
1+b

⌉
+ 1 or

alternatively h(G) ≤ d logc+1(k.c+ 1)e+ 1.

1 E-Mails: {erikamorais, hebert, braullyrocha}@inf.ufg.br
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Convexidade em grafos e suas invariantes são tópicos bastante estuda-
dos na literatura, no entanto, há poucos trabalhos relacionados a invariante
número de Sierksma na convexidade geodética, que é sobre caminhos mı́nimos
em grafos. O presente trabalho realiza um estudo sobre esta convexidade com
o objetivo de caracterizar e determinar limites superiores para o número de
Sierksma de algumas classes de grafos, tais como grafos k-partidos e split. O
número de Helly consiste no menor inteiro k, tal que todo conjunto S ⊆ V ,
com k + 1 elementos, tem a propriedade

⋂
u∈S H(S \ {u}) 6= ∅.

Um conjunto S de vértices de um grafo G é um conjunto de Carathéodory
se o conjunto ∂H(S) definido como H(S) \ ⋃u∈S H(S \ {u}) é não vazio. Já
o número de Caratheodory é definido como a cardinalidade máxima de um
conjunto de Carathéodory. Define-se o número de Sierksma como a cardi-
nalidade do conjunto Sierksma independente máximo, onde S é Sierksma
independente se existe p ∈ S tal que H(S \ {u}) \⋃u∈(S\{p})H(S \ {u}) 6= ∅.

As inequações de Sierksma [1] relacionam o número de Carathéodory, o
número de Helly e o número de Sierksma: e− 1 ≤ c ≤ max{h, e− 1}. Sendo
assim o nosso estudo foca nas classes de grafos onde o número de Helly é
maior do que o número de Carathéodory.
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Several distributed computing models and information dissemination con-
sider an initial set of “activated” nodes that spread some information over a
network. In such models it is natural to think how the spread will be realized.
In this way, many rules can be taken, where nodes are added to an initial acti-
vated node set. We consider a spread in a simple graph G = (V,E) such that
vertices are activated according to the distances among them. More specifi-
cally, given an initial active node set S ⊆ V (G), a vertex w becomes active
whenever there exists a pair u, v ∈ S such that w belongs to a shortest path
between u and v. We consider the problem of finding the size of a largest set
such that no elements can be activated by the others. Formally, the geodetic
convexity is that one in which a subset of vertices is geodetically convex if
all the vertices of any shortest path between vertices of S belong to S. The
convex hull H(S) of S is the smallest convex set containing S. A set S is
convexly independent if v /∈ H(S \ {v}) for every v ∈ S. The rank rk(G)
of G is the largest size of a convexly independent set [1, 2]. In this work we
give some simple lower bounds for the rank on the geodetic convexity and
determine the exact value for complete k-partite graphs and powers of cycles.
Moreover we present a polynomial-time dynamic programming algorithm for
cacti.
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This work complements the development of a method to generate the
covering of a solid body using spheres, as presented in the article “A new
penalty/stochastic approach to an application of the covering problem: the
Gamma Knife treatment”. The article deals with coverings of convex bodies
using unequal spheres Si, i ∈ N , where N is an index set. One question
was left to be answered later: how to ensure that there are no “holes” in the
covering spheres structure?

For the matter of this presentation, it is assumed that the covering spheres
structure has already been obtained and the objective is to certify that there
are no “holes” in it. On the other way, it is under development the theoretical
basis to prove that the generated covering structures don’t present “holes”.

Let G be the undirected graph G(V,E) where V is the set of the centers
of the spheres and E is the set of the edges, such that the edge eij ∈ E if
spheres Si and Sj overlap each other. A method involving the geometrical
properties of the cliques K3 and K4, as subgraphs of G, will be presented,
which permits to identify the presence of “holes” in the covering structure.
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Given a solid T , represented by a compact set in R3, the aim of this
work is to find a quasi-covering of T by a finite set of spheres of different
radii. The volume occupied by the spheres on the outside of T is limited and
some level of intersection between the spheres is allowed. The intersection
is allowed because the application that motivated this study is the planning
of a radio-surgery treatment, known as Gamma Knife. This problem can be
formulated as a non-convex optimization problem with quadratic constraints
and linear objective function. In this work, two linear integer mathemati-
cal formulations with binary variables are proposed for the Gamma Knife
problem. Besides the formulations, a hybrid method is proposed as well.
The hybrid method combines heuristic, data mining and an exact method.
Computational results show that the proposed methods outperform the ones
presented in the literature.
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A cubical d-dimensional polytope, or simply cubical d-polytope, is a d-
polytope with all its facets, (d − 1)-dimensional faces, being combinatori-
ally equivalent to (d − 1)-dimensional cubes. A graph of a polytope is the
undirected graph formed by the vertices (0-dimensional faces) and the edges
(1-dimensional faces) of the polytope.

The first part of the paper deals with the connectivity of graphs of cubical
polytopes. We first establish that, for every dimension d ≥ 3 and every
integer 0 ≤ α ≤ d − 3, the graph of a cubical d-polytope with minimum
degree d+ α is (d+ α)-vertex-connected. Secondly, we show that, for d ≥ 4
and 0 ≤ α ≤ d−3, every vertex separator of cardinality d+α in the graph of
a cubical d-polytope consists of all the neighbours of some vertex and breaks
the polytope into exactly two components.

The second part of the paper deals with the stronger concept of linkedness.
A graph with at least 2k vertices is k-linked if, for every set of 2k distinct
vertices organised in arbitrary k pairs of vertices, there are k disjoint paths
joining the vertices in the pairs. Larman and Mani in 1970 proved that the
graphs of simplicial d-polytopes, d-polytopes with all its facets being (d−1)-
simplices, are (d + 1)/2-linked. This is the maximum possible linkedness,
given the facts that a k-linked graph is at least (2k − 1)-vertex-connected
and that some of these graphs are d-vertex-connected but not (d+ 1)-vertex-
connected. Here we establish that graphs of cubical d-polytopes are also
(d + 1)/2-linked, for every d 6= 3, which is again the maximum possible
linkedness.

55



A strategy to select vertices as candidates for

routers in a Steiner tree

João Guilherme Martinez 1 Rosiane de Freitas 1,∗

Altigran da Silva 1 Fábio Protti 2
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Let G be an undirected weighted graph with n vertices and m edges, and
let W be a subset of vertices from G, a Steiner tree is a connected subgraph
T from G that contains all vertices from W and its edge weights sum is
minimum. Vertices in W are called terminals and all other vertices from
G used to form T are called Steiner vertices. It is known that the decision
version for the Steiner trees problem in graphs is NP-Complete, so proposals
for new heuristics help the development of better approximation algorithms.

In this paper we present a heuristic algorithm based on the concepts
of a good exact enumerative algorithm already proposed in the literature
[DOP14]. The idea is to test the insertion of each non-terminal vertex as
a router in a greedy way and check if it optimizes the actual solution tree.
We do this until we reach the maximum numbers of routers (k− 2). Despite
the many algorithms already developed for this problem, we present simple
heuristics method and we show that the algorithm achieves good results in
benchmark test bases for complete and sparse graphs with random weights
edges.
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A proper circular-arc (PCA) model is a pairM = (C,A) such that C is

a circle and A is a �nite family of inclusion-free arcs of C. Each arc A of A
has two extremes : its beginning point s(A) and its ending point t(A), which
are the �rst and last points of A reached when C is clockwise traversed,

respectively. A PCA model is a (c, `)-CA model when the circumference

of the circle is c and all arcs of A have length `. In general, M is a unit
circular-arc (UCA) model when it is a (c, `)-CA model for some c, `. Two

PCA models are equivalent if the extremes of their arcs appear in the same

order when C is clockwise traversed.

For any A ∈ A, its next arc is de�ned as the arc next(A) = A′ such that

s(A′) is the last beginning point reached before t(A) when C is clockwise

traversed. The k-th power of A is de�ned recursively as A1 = A and Ak =
(s(A), t(next(Ak−1))), while the k-th power of a modelM isMk = (C, {Ak |
A ∈ A}). For a (c, `)-CA model U , we de�ne the j-th multiple of U as

j · U = (C, {(s(A), s(A) + j`) | A ∈ A}).
In this work we study the question of whether some model M is k-

multiplicative, i.e., determining if the models Mi and i · M are equivalent

for all i ≤ k. For k = 1, this question is precisely the recognition problem

for UCA models, which was �rst solved by Tucker. Soulignac and Terlisky

recently proposed a new characterization of (c, `)-CA models that yields a

simpler algorithm for the recognition of UCA models, based on Pirlot's syn-

thetic graphs. In this work we generalize synthetic graphs to study the mul-
tiplicative problem. Our results can be applied to characterize which powers

of UCA graphs are UCA graphs as well.
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Un torneo es un digrafo T = (V,A) que posee exactamente una flecha para
cada par de vértices. Un torneo T se dice transitivo si, para cualesquiera
tres vérices a, b, c ∈ V (T ) se cumple la transitividad de la relación. Es decir,
si a → b y b → c son flechas del digrafo, entonces a → c es una flecha del
digrafo. Todo torneo transitivo tiene un vértice fuente y un vértice sumidero.
Definimos el digrafo de torneos transitivos como el digrafo de intersección de
subtorneos transitivos maximales τ(D) de D tal que

• V (τ(D)) es el conjunto de todos los subtorneos transitivos maximales
por contención del digrafo D y

• A(τ(D)) es el conjunto de todas aquellas flechas definidas de la si-
guiente forma: si T1 y T2, son subtorneos transitivos maximales de
D, f1, f2 y s1, s2 sus correspondientes vértices fuentes y sumideros,
respectivamente, entonces T1 → T2 si s1, f2 ∈ T1∩T2 y f1, s2 /∈ T1∩T2.

Se presentan los resultados iniciales sobre el comportamiento de este ope-
rador y su v́ınculo con el operador clique y con el operador de ĺıneas. Se ana-
liza el operador en los digrafos de comparabilidad y además, la convergencia,
divergencia y periodicidad en ciclos orientados con una cuerda.

Se estudia el comportamiento en orientaciones de un grafo. En particular,
se consideran las distintas orientaciones del octaedro O3, donde resulta que
el operador converge en algunas y diverge en otras.
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A unit circular-arc (UCA) model is a pair M = (C,A) such that C is
a circle and A is a �nite family of arcs of C, all having the same length. A
UCA model M is called a (c, `)-CA model when |C| = c and the length of
the arcs of A is `. The model M is equivalent to a UCA model M′ when
the extremes ofM andM′ appear in the same order when their respective
circles are clockwise traversed, whereas M and M′ are isomorphic when
their intersection graphs are isomorphic.

If c ≤ c′ and ` ≤ `′ for every (c′, `′)-CA model M′ equivalent (resp.
isomorphic) to M, then M is said to be minimal (resp. minimum). It is
already known that every UCA model is equivalent (resp. isomorphic) to
some minimal (resp. minimum) UCA model. For n ∈ N, each (c, `)-CA
model with maximum c (resp. `) among those minimal models with n arcs
are said to be circle extremal (resp. arc extremal). Similarly, the (c, `)-CA
models with maximum c (resp. `) among those minimum models with n arcs
are called circle isoextremal (resp. arc isoextremal). Finally, those models
that are both circle and arc (iso)extremal simply are referred to as being
(iso)extremal.

Lin and Szwarc�ter (Unit Circular-Arc Graph Representations and Fea-
sible Circulations, SIAM J. Disc. Math., 22(1), pp. 409�423) left open the
problem of determining the value c (resp. `) of circle (resp. arc) isoextremal
models. In this work we solve these problems and their analogous problems
for extremal models, while we characterize those (circle, arc) (iso)extremal
models, for every n ∈ N.
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A bi-circular-arc model is a triple (C, I, E) such that C is a circle, and
I, E are families of arcs over C. A bipartite graph G = (V,W,E) is a circular-
arc bigraph if and only if there exists a bi-circular-arc model (C, I, E) and a
bipartition a : V ∪W → I ∪ E such that, for every v ∈ V,w ∈ W , we have
a(v) ∈ I, a(w) ∈ E , and vw ∈ E precisely when a(v) ∩ a(w) 6= ∅. In that
case, we say that G admits the model (C, I, E).

We define the class of Helly circular-arc bigraphs based on the concept
of bipartite-Helly families. A graph G = (V,W,E) is said to be a Helly
circular-arc bigraph if G admits a bi-circular-arc model (C, I, E) such that,
for every biclique K ⊆ V ∪W , there exists a point p ∈ C such that, for every
v ∈ K, p ∈ a(v). The class is trivially hereditary over induced subgraphs. We
demonstrate that, if G is a C6-free bipartite graph with no isolated vertices,
G is a Helly circular-arc bigraph if and only if G2 is a Helly circular-arc
graph.

We study the recognition problem for the class of Helly circular-arc bi-
graphs. We prove that it is polynomial solvable for graphs without isolated
vertices by presenting an algorithm that, given a bipartite graph G without
isolated vertices, reduces the problem to the recognition of Helly circular-arc
graphs over G2 if G is C6-free, and searches for forbidden subgraphs from a
finite set if G has an induced C6.

1Partially supported by CONICET, CAPES/PNPD and CNPq.
2Partially supported by CNPq.
3Partially supported by CAPES.
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One of the most famous pursuit games on graphs is the Cops-and-Robber
game. In this game, there are two players, C and R, moving their pawns
on vertices of a given graph G. Player C controls the cops while player R
controls the robber. The objective of the cops is to capture the robber in a
finite number of rounds. In this case, the cops win; otherwise, the robber
wins.

Given a graph G, the copnumber of G, denoted by c(G), is the minimum
integer k such that C can win, independently of the robber’s strategy, using
exactly k cops in G. Kinnersley recently proved that, given an arbitrary
graph G and an integer k, deciding if c(G) ≤ k is EXPTIME-complete [3].

Meyniel conjectured that for any connected graph G with n vertices,
c(G) = O(

√
n) [4,2]. This conjecture remains unsolved. In fact, the soft

Meyniel’s conjecture, which states that, for any connected graph G with n
vertices, c(G) = O(n1−ε) for some ε > 0, also remains open.

In this work, we use the primeval decomposition technique to obtain
polynomial time algorithms to compute the copnumber of (q, q − 4)-graphs
and P4-tidy graphs. Furthermore, we prove that the Meyniel’s conjecture is
true for P4-tidy graphs and (q, q − 4)-graphs with at least q vertices.

We also use the primeval decomposition technique to obtain a polynomial
time algorithm for (q, q− 4)-graphs to the Spy Game, which is other pursuit
game recently introduced by Nisse et al [1].

[1] N. Cohen, N. A. Martins F.M. Inerney, N. Nisse, S. Pérennes, R. Sampaio, Spy-game on graphs: Complexity and
simple topologies, Theoretical Computer Science, (2018).

[2] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs, Discrete Applied Mathematics, 17
(1987), 301–305.

[3] W. B. Kinnersley, Cops and Robbers is EXPTIME-complete, Journal of Combinatorial Theory Series B, 111
(2015), 201–220.

[4] H. Meyniel, personal communication with P. Frankl, (1985).
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The Clobber game was introduced by Albert et al. in 2002 [1]. This game
is played on a graph G, with a black, or white, stone on each of its vertices
(initial configuration). An initial configuration is k-reducible if it can be re-
duced to k stones after a succession of moves. A graph is strongly 1-reducible
if, for any vertex v, any initial configuration that is not monochromatic out-
side v, can be reduced to one stone on v of either color. Theoretical results
using Graph Theory were obtained by Dantas et al. [2] who proved that
the cartesian product of two strongly 1-reducible connected graphs, and the
r-power of a path with r ≥ 3 are strongly 1-reducible. In this work, we
introduce the use of the combinatorial game Clobber as an alternative to
the traditional tests for executive functions (EFs), like Tower of Hanoi Test,
and present experiments that evidence the use of Clobber game as a test
to identify changes in EFs, especially if we scale up in order to identify the
moment of performance stabilization.

References

[1] Albert, M.; Grossman, J.; Nowakowsky, R. and Wolfe, D. An Introduction to Clobber.
Integers, Journal of Combinatorial Number Theory, 5(2), A1, pp. 1–12, 2005.
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Let G = (V,E) a simple, undirected graph, and V0 ⊆ V a subset of
vertices called originators. A k-step broadcast scheme for G is a (2k + 1)
sequence V0, E1, V1, E2, V2, . . . , Ek, Vk = V such that every 1 ≤ i ≤ k verifies
Vi ⊆ V , Ei ⊆ E and the following three conditions hold: (1) each edge in
Ei has exactly one endpoint in Vi−1, (2) no two edges in Ei share a common
endpoint, and (3) Vi = Vi−1 ∪ {v : uv ∈ Ei}. The Minimum Broadcast
Time Problem asks for the minimum integer number k such that a k-step
broadcast scheme for G is possible. This NP-complete problem has been
approached under different algorithmic techniques (see [Hromkovič et al.,
Dissemination of information in interconnection networks (broadcasting &
gossiping), Combinatorial Network Theory (1996)] for a survey). However,
few articles so far address the design of efficient algorithms for specific graph
families (such as [Slater et al., Information dissemination in trees, SIAM
Journal on Computing (1981)] or [A. Farley et al., Broadcasting in trees with
multiple originators, SIAM Journal on Algebraic Discrete Methods (1981)]).
In this work we explore the existence of polynomial time algorithms for split
graphs and interval graphs with one originator, and for bounded treewidth
graphs with an arbitrary number of originators.
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A simple graph G = (V,E) is a non-empty finite set V of elements called
vertices and a set E of non-ordered pairs of elements other than V , called
edges. Each edge and of E is denoted by the pair of vertices e = (v, w)
that forms. In this case, the vertices v, w are the ends of the edge and,
being said adjacent. An embedding of G into a surface is a drawing of the
graph on the surface in such a way that its edges may intersect only at
their endpoints. In the classic vertex coloring problem (VCP), a mapping
c : V → N such that c(i) 6= c(j) for each (i, j) ∈ E. The maximum used
color k, which is equivalent to the number of used colors in this problem, must
be minimized. A generalization of VCP is the bandwidth coloring problem
(BCP), where there is a distance function d : E → N and the mapping
must respect |c(i) − c(j)| ≥ di,j for each (i, j) ∈ E. When d : E → {1}, the
problem is reduced to VCP. In both, we want an embedding in R of the input
weighted graph, that is, we want an assignment of positive integers to the
vertices (colors) that respect the embedding process (whose length of a line
segment is given by the weight of the edge between two adjacent vertices).
Based on this point of view, in this work, we present an overview of our
recent results involving these coloring problems with distance constraints,
called by us distance coloring problems. In addition to feasibility and
polynomiality for specific classes of graphs, will be emphasized our results
in constraint programming (CP), integer programming (IP) and polyhedral
combinatorics. We present the orientation and distance IP models, show that
there is an equivalence between facet-defining inequalities between them.
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The clique graph K(G) of a graph G is the intersection graph of the set
of all (maximal) cliques of G. The second clique graph K2(G) of G is defined
as K2(G) = K(K(G)). The main motivation for this work is to attempt
to characterize the graphs G that maximize |K2(G)|, as has been done for
|K(G)| by Moon and Moser in [1].

The suspension S(G) of a graph G is the graph that results from adding
two non-adjacent vertices to the graph G, that are adjacent to every vertex
of G. Using a new biclique operator B that transforms a graph G into its
biclique graph B(G), we found the characterization K2(S(G)) ∼= B(K(G)).
We also found a characterization of the graphs G, that maximize |B(G)|.

Here, a biclique (X, Y ) of G is an ordered pair of subsets of vertices
of G (not necessarily disjoint), such that every vertex x ∈ X is adjacent
or equal to every vertex y ∈ Y , and such that (X, Y ) is maximal under
component-wise inclusion. The biclique graph B(G) of the graph G, is the
graph whose vertices are the bicliques of G and two vertices (X, Y ) and
(X ′, Y ′) are adjacent, if and only if X ∩X ′ 6= ∅ or Y ∩ Y ′ 6= ∅.
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The thinness and the proper thinness are recently introduced parameters of a
graph [1,2]. A graph G is k-thin if there exists a k-partition and an ordering
of V (G) such that for all ordered triple (p, q, r) of vertices of V (G), if p and q
are in a same part and (p, r) ∈ E(G), then (q, r) ∈ E(G). Such an ordering
is called consistent. A graph G is proper k-thin if there exists a k-partition
and a consistent ordering of V (G) such that for all ordered triple (p, q, r)
of vertices of V (G), if q and r are in a same part and (p, r) ∈ E(G), then
(p, q) ∈ E(G). Such an ordering is called strongly consistent. The 1-thin
graphs (resp. proper 1-thin graphs) are precisely the interval graphs (resp.
proper interval graphs).

The complexity of recognizing whether a graph is k-thin or proper k-thin
is open, even for fixed k ≥ 2. In [2], it is shown that given a partition of V (G),
the problem of determining whether there exists a consistent (or strongly
consistent) ordering of V (G) is NP-complete, whereas given an ordering <
of V (G), determining the minimum k-partitioning of V (G) for which < is
consistent (or strongly consistent) can be done in polynomial time.

We introduce the subclass of proper 2-thin of precedence as those proper
2-thin graphs that admit a strongly consistent ordering with respect to the
bipartition (X, Y ) of V (G) in which each vertex of X precedes each vertex
of Y . We present a characterization and an algorithm to recognize this class
in O(n2) time, among other results.
References:
[1] Mannino, C., Oriolo, G., Ricci, F., Chandran, S. (2007). The stable set
problem and the thinness of a graph. Operations Research Letters, 35:1–9.
[2] Bonomo, F., Estrada, D. (2017). On the thinness and proper thinness of
a graph. CoRR, abs/1704.00379.
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A graph G has an (h, s, t)-representation if it can be represented as the
intersection graph of subtrees of a tree T , such that the maximum degree of
T is at most h, every subtree has maximum degree s and two vertices of G
are adjacent if and only if their corresponding subtrees intersect in at least
t vertices [1]. The class of graphs that admits an (h, s, t)-representation is
denoted by [h, s, t]. An (h, s, t)-representation of G is orthodox if all leaves
of a subtree are also leaves of T , and two vertices of G are adjacent if and
only if their corresponding subtrees share a leaf [1]. The class of graphs that
admits an orthodox (h, s, t)-representation is denoted by ORTH[h, s, t].

The class [3, 3, t] and ORTH[3, 3, t] have been studied by Jamison and
Mulder in [1,2]. In this work, we investigate under what conditions a graph
Km,n belong to the class ORTH[3, 3, t]. Three results are presented. We show
that the graph K5,5 /∈ ORTH[3, 3, 5], proving the conjecture by Jamison and
Muder [2], for t = 5. We also show that the graph K3,n ∈ ORTH[3, 3, t],
for t = 2dlog2 ne + 3. Finally, we present an algorithm that constructs an
orthodox (3, 3, t)-representation of a graph G ⊆ Kn,n for n = 3x with x ∈ N∗,
where t = 2n+ n/3− 3.

[1] JAMISON, R. and MULDER, H., Tolerance intersection graphs on
binary trees with constant tolerance 3, Discrete Mathematics, vol. 215, n. 1
3, pp. 115 131, 2000.
[2] JAMISON, R. and MULDER, H., Constant tolerance intersection
graphs of subtrees of a tree , Discrete Mathematics, vol. 290, n. 1, pp. 27
46, 2005.
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A biclique graph of a graph G is the intersection graph of all maximal
bicliques in G. A bipartite interval model is a bipartition of a finite number
of intervals on the real line. A bipartite circular-arc model is a bipartition of a
finite number of arcs on a circle. An interval bigraph is the intersection graph
of a bipartite interval model in which each vertex corresponds to an interval
and two vertices share an edge if and only if both corresponding intervals
intersect and do not belong to the same part. A circular-arc bigraph is
the intersection graph of a bipartite circular-arc model in which each vertex
corresponds to an arc and two vertices share an edge if and only if both
corresponding arcs intersect and do not belong to the same part. Note that
every interval bigraph is a circular-arc bigraph.

In this work, we present a sweepline algorithm for finding all maximal
bicliques of an interval bigraph using a given bipartite interval model. A
variation of this algorithm can be used for finding the maximal bicliques of
a circular-arc bigraph.

We also present some structural properties of bicliques of an interval
bigraph when viewed as a set of intervals of a bipartite interval model. We
introduce the notion of gaps and centers of bicliques and, based on these
structural properties, we show that all biclique graphs of interval bigraphs
are K1,4-free co-comparability graphs.

1Partially supported by CAPES.
2Partially supported by CONICET, CAPES/PNPD and CNPq.
3Partially supported by CNPq.
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Edge-intersection graphs of Paths on a Grid (EPG) is a class that has been
defined by Golumbic[1], in which vertices are represented as paths on a grid
and two vertices are adjacent if and only if the corresponding paths intersect
in at least an edge of the grid. If every path can be represented with at most
k bends, then we say this graph has a Bk−EPG representation.

A set of paths is edge-Helly when every subset of the paths that have
pairwise edge intersections has at least one edge contained in their total
intersection. A B1-EPG representation is Helly if the family of path has the
edge-Helly property.

In this work, we prove that the B1−EPG-Helly graph recognition problem
is NP-hard. The proof of the NP−hardness of B1−EPG-Helly recognition
involves a reduction from the One-In-Three 3SAT problem with positive vari-
ables, similar to the one used by Heldt et al. [2] for B1-EPG.

The reduction encodes a 3SAT formula as a graph, in which some vertices
correspond to the variables of the formula. The gadget used in the reduction
forces any B1-EPG Helly representation of the graph to have exactly one
of the three variables in each clause using a horizontal segment to intersect
with the gadget whereas the other two are forced to intersect the gadget
vertically. The concepts of horizontal and vertical are defined relative to a
specific verticex of the construction.
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A connection tree T of a graph G for a terminal set W ⊆ V (G) is a tree
subgraph of G such that leaves(T ) ⊆ W ⊆ V (T ). Given a graph G and a
terminal set W , the well-known Steiner tree problem in graphs consists
in a optimization task whose goal is to find a connection tree of G for W
which has the minimum possible number of vertices.

In this work, instead of looking for minimum order connection trees, we
ask for the existence of connection trees which satisfy additional constraints.
A non-terminal vertex of a connection tree T is called linker if its degree in
T is exactly 2, and it is called router if its degree in T is at least 3. Given
a graph G, a terminal set W and two non-negative integers ` and r, the
Terminal connection problem (TCP) asks whether G admits a strict
connection tree for W with at most ` linkers and at most r routers.

TCP was proved to be NP-complete even if r is bounded by a constant [2].
We extend such a result by showing that the problem remains NP-complete
on strongly chordal graphs. An interesting by-product of our proof is that
it separates the complexity of TCP from the complexity of Steiner tree,
which is polynomial-time solvable on strongly chordal graphs [3]. In contrast,
for the class of cographs, we prove that the complexity of TCP agrees with
the complexity of Steiner tree, which is polynomial-time solvable [1].
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An and/or graph is an acyclic, edge-weighted directed graph containing a
single source vertex such that every vertex v has a label f(v) ∈ {and, or}.
A solution subgraph H of an and/or-graph must contain the source and
obey the following rule: if an and-vertex (resp. or-vertex) is included in H
then all (resp. one) of its out-edges must also be included in H[1]. While
this problem is well studied[2,3], the case where the input graph is an planar
graph remains unexplored. In this work, we provide a proof that the problem
remains NP-hard even when restricted to either planar graphs or apex graphs
having a single sink, we also provide a proof that this problem is FTP.
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Given a graph G, a weight function w : E(G) → N \ {0}, and an ori-
entation D of G, we define µ−(D) = maxv∈V (G)w

−
D(v), where w−D(v) =∑

u∈N−
D (v)w(uv). We say that D is a weighted proper orientation of G if

w−D(u) 6= w−D(v) whenever u and v are adjacent. We introduce the parameter
weighted proper orientation number of G, denoted by −→χ (G,w), which is the
minimum, over all weighted proper orientations D of G, of µ−(D). When all
the weights are equal to 1, this parameter is equal to the proper orientation
number of G, which has been object of recent studies and whose determina-
tion is NP-hard in general but polynomial-time solvable on trees. Here, we
prove that the equivalent decision problem of the weighted proper orienta-
tion number (i.e., −→χ (G,w) ≤ k?) is weakly NP-complete on trees but can
be solved by a pseudo-polynomial algorithm whose running time depends on
k. Furthermore, we present a dynamic programming algorithm to determine
whether a general graph G on n vertices and treewidth at most tw satisfies
−→χ (G,w) ≤ k, running in time O(2tw2 · k2tw · n). We complement this result
by showing that the problem is W[1]-hard on general graphs parameterized
by the treewidth of G, even if the weights are polynomial in n.
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Los grafos vértice intersección de caminos en una grilla (grafos VPG) son
grafos cuyos vértices pueden ser representados como caminos en una grilla
tal que dos vértices son adyacentes si y sólo si los caminos correspondientes
comparten al menos un vértice de la grilla. Se sabe que reconocer a los grafos
VPG es un problema NP-completo. En este trabajo, estudiamos la clase de
los grafos PVPG, esta es una subclase de los grafos VPG tal que todos los
caminos representantes están entre dos rectas paralelas y tienen sus puntos
finales sobre estas rectas. Probamos que PVPG = Co-comparabilidad. Más
aún, presentamos algunos subgrafos inducidos prohibidos minimales para la
clase de los grafos B1-PVPG (esto es, grafos PVPG donde cada camino tiene
a lo sumo un bend).
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The clique graph, K(G), of a graph G is the intersection graph of its (max-
imal) cliques. The iterated clique graphs ofG are then defined by: K0(G) = G
and Kn(G) = K(Kn−1(G)). We say that G is clique-divergent if the set of
orders of its iterated clique graphs, {|Kn(G)| : n ∈ N} is unbounded. Clique
graphs and iterated clique graphs have been studied extensively, but no char-
acterization for clique-divergence has been found so far.

Recently, it was proved that the clique-divergence is undecidable for the
class of (not necessarily finite) automatic graphs, which implies that clique-
divergence is not first-order expressible for the same class.

Here we strengthened the latter result by proving that the clique-divergence
property is not first-order expressible even for the class of finite graphs. Logic
expressibility has strong relations with complexity theory and consequently,
new avenues of research are opened for clique graph theory.
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The clique graph K(G) of G is the intersection graph of the family of
maximal cliques of G. For a family F of graphs, the family of clique-inverse
graphs of F is defined as K−1(F) = {H | K(H) ∈ F}. Let Fp be the family of
Kp-free graphs, that is, graphs with clique number at most p−1, for an integer
constant p ≥ 2. Deciding whether a graph H is a clique-inverse graph of Fp

can be done in polynomial time; in addition, K−1(Fp) can be characterized
by a finite family of forbidden induced subgraphs for p ∈ {2, 3, 4}. In [1], the
authors propose to extend such characterizations to higher values of p. A
natural conjecture that then arises is: Is there a characterization of K−1(Fp)
by means of a finite family of forbidden induced subgraphs, for any p ≥ 5 ?
In this work we show that this conjecture is true.
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In this work, we discuss on the feasibility of applying the unit-demand envy-
free pricing problem as strategy in modeling the sale of tickets for sporting
events. An mathematical formulation in integer nonlinear programming of
the problem is proposed, where assumes that the products have different
price ranges, that the valuations of the products consumers are given by re-
serving prices, that consumers are grouped into segments, that the supply of
each product is limited, that consumers can claim several units of the same
product and also that there is no price difference for the same product. The
goal is to maximize the seller’s revenue, but in a way that buyer satisfac-
tion. Preliminary computational experiments demonstrate the adequacy of
the proposed formulation.
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Pick-up and delivery operations in transportation tasks are usually per-
formed using stacks. The Last In First Out nature of stacks imposes re-
strictions to the order in which pick-ups and deliveries are performed. In
this work, we consider both, limited and unlimited capacity stacks and we
study the worst cases on the minimum number of stacks needed to perform
any given sequences of pick-up and delivery operations allowing simple mod-
ifications on the delivery route. These problems amount to computing the
smallest bounded chromatic number in a family of permutation graphs.

By allowing the reversion (R) of the delivery route one can save from one
third (capacity 2) to half (unlimited capacity) on the number of stacks needed
to perform any pair of pick-up and delivery routes in comparison with the
worst case in which no modification is allowed. By allowing the modification
of the starting point (S) one can always save half of the stacks. By allowing
both types of modifications (R + S) one can always save at least half of the
stacks (a few more in case of unlimited stacks) and at most one less than 3
quarters of the stacks.

The following table summarizes the results obtained in this work for n
pairs of pick-up and delivery operations. Each row considers a different set
of allowed operations and each column is related to a different stack capacity.
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A great challenge in graph theory is the determination of the celebrated
Ramsey numbers r(m,n), the smallest r such that every red-blue coloring of
the edges of the clique Kr yields either a red copy of Km or a blue copy of
Kn.

Consider the following generalization. Let Kc×s denote the complete mul-
tipartite graph having c classes with s vertices per each class. Given an
integer c ≥ 2 and graphs G1, . . . , Gk, the size multipartite Ramsey num-
ber mc(G1, . . . , Gk) denotes the smallest positive integer s (if it exists) such
that any k-coloring of the edges of Kc×s contains a monochromatic copy
of Gi in color i for some i, 1 ≤ i ≤ k. Particularly interesting, the num-
ber m2(G1, . . . , Gk) produces the widely studied bipartite Ramsey number
b(G1, . . . , Gk).

Burger, Grobler, Stipp, and van Vuuren [Discr. Math. 283 (2004) 45–
49 and Utilitas Math. 66 (2004) 137–163] introduced and investigated the
size multipartite Ramsey numbers mc(G1, G2) where each Gi is a complete
multipartite graph. Since then, these numbers have been studied for special
classes of graphs and several colors.

In this work, we discuss the numbers mc(G1, . . . , Gk) when each Gi is a
bipartite graph Kn,ni

for a fixed positive integer n. We show some upper
bounds using density arguments and some lower bounds using connections
between classical Ramsey numbers and some concepts closely related to com-
binatorial designs (Hadamard matrix, strongly regular graph). These bounds
are achieved for some instances, which allow us to obtain some exact classes.
It is worth mentioning that exact values of Ramsey numbers are very often
highly non-trivial to establish.
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An extremal problem that dates back to 1960 is to determine the max-
imum number of edges that a graph can have if its maximum degree, de-
noted by ∆(G), and matching number are bounded. A graph satisfying
the mentioned properties with the maximum number of edges is called an
edge-extremal graph. This problem was solved [1] for general graphs and,
depending on the parity of ∆(G), the edge-extremal graphs are a disjoint
union of cliques and stars of a given size or a disjoint union of copies of a
special graph H and stars. Of note is that the graph H is not chordal.

A natural problem that arises is to investigate how the maximum number
of edges changes if we restrict the structure of the graphs considered. For in-
stance, if we require the graphs to belong to a given graph class. In this work,
we determine the number of edges of the edge-extremal graphs in the class
of block duplicate graphs [2], a subclass of chordal graphs. We show that a
disjoint union of cliques and stars of a given size is an edge-extremal graph in
this class and conjecture that this is also the case for chordal graphs. We also
determine the number of edges of the edge-extremal graphs in a graph class
C, when C is such that its graphs admit a proper edge-coloring with ∆(G)
colors. Moreover, if the star with ∆(G) leaves belongs to C, then a disjoint
union of such stars is an edge-extremal graph in C. Examples of graph classes
satisfying this condition are bipartite graphs, outerplanar graphs with max-
imum degree at least 3 and planar graphs with maximum degree at least 7.

[1] V. Chvátal and D. Hanson, Degrees and matchings. J. Combin. Theory Ser. B, 20:128–138, 1976.
[2] M. C. Golumbic and U. N. Peled, Block duplicate graphs and a hierarchy of chordal graphs. Discrete
Appl. Math., 124:67–71, 2002.
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The interval graph of a family R of closed intervals of the real line is the
graph G such that V (G) = R and, for all distinct I, J ∈ V (G), (I, J) ∈ E(G)
if and only if I ∩ J 6= ∅. We call R an interval model of G. An order
P = (X,≺) is a binary relation ≺ on the set X which is irreflexive and
transitive. Moreover, P is an interval order if there is an interval model
R = {[`x, rx] | x ∈ X} such that x ≺ y if and only if rx < `y. The minimum
number IC(G) (resp. IC(P )) of distinct lengths of intervals required in a
model of G (resp. P ) is called interval count of G (resp. P ). An interval
graph G is trivially perfect (in class TP) if G is P4-free. An interval graph
G is a split graph (in class Split) if there exists a partition (K, I) of V (G)
in which K is a clique and I is an independent set. Fishburn [1] introduced
the extremal problem of determining

σC(k) = min{|X| | P = (X,≺) is in class C and IC(P ) ≥ k}

and σ̃C(k) which is defined analogously for graphs. Fishburn conjectured that
σC(k) = 3k−2 for C as the class of general interval orders, having proved the
conjecture for all k ≤ 7. However, no results on σ̃C(k) are known. We study
σC(k) and σ̃C(k) for C ∈ {TP,Split}. Among other results, we prove that

σTP (k) = 3k− 2, σSplit(k) = 3k− 2, σ̃TP (k) = (3k−1)
2

, σ̃Split(k) = 3k− 1.
Fishburn’s conjecture for general interval orders and graphs remains open.
References:
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