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Unitary Cayley graphs

For a positive integer n, the unitary Cayley graph Xn =

Cay(Zn,Un) is defined by the additive group of the ring Zn of in-
tegers modulo n and the multiplicative group Un of its units, where
Un = {a ∈ Zn : gcd(a, n) = 1}. The vertex set of Xn is
the set V (Xn) = Zn = {0, 1, · · · , n − 1} and its edge set is
E(Xn) = {ab : a, b ∈ Zn and gcd(a − b, n) = 1}. The uni-
tary Cayley graphs Xn are regular of degree |Un| = φ(n), where
φ(n) is the Euler function.

Total coloring

A k-total coloring of G is an assignment of k colors to the edges
and vertices of G, such that no adjacent elements (vertices and
edges) receive the same color. The total chromatic number of G,
denoted by χT(G), is the least k for which G has a k-total color-
ing. Let ∆(G) be the maximum degree of G, clearly, χT(G) >
∆(G) + 1 and the Total Coloring Conjecture (TCC) [1, 6] states
that χT(G) 6 ∆(G) + 2. This conjecture has been verified for
some classes but the general statement has remained open for more
than fifty years and has not been settled even for regular graphs.
If χT(G) = ∆(G) + 1, then G is said to be Type 1, and if
χT(G) = ∆(G) + 2, then G is said to be Type 2. The problem
of deciding if a graph is Type 1 has been shown NP-complete [5].
For more information, we refer to [3], which is the first PhD thesis

on total coloring developed in Brazil.

Total coloring of unitary Cayley graphs

Prajnanaswaroopa et al. [4] established the TCC for all unitary
Cayley graphs. Some unitary Cayley graphs are already known to
be Type 1 or Type 2. If n = pr is a prime power, then Xpr is
a complete p-partite graph and the total chromatic number is well
known: if p is odd, thenXpr is Type 1, and if p is even, thenXpr is
Type 2 [3].
We determine the total chromatic number of all members of two

families of unitary Cayley graphsXn: when n = 6s, for a positive
integer s, and when n = 3p, for prime p ≥ 5.
Boggess et al. [2] proved that for n ≥ 3, graphXn can be decom-

posed into φ(n)
2

edge-disjoint Hamiltonian cycles, denoted by Hj
n,

with j ∈ Un; and this result is used to prove the following theo-
rems. Consider directed edges {〈i, i + j mod n〉 : 0 ≤ i ≤
n− 1} to indicate the direction used to construct the cyclesHj

n, as
Hj
n andHn−j

n are the same cycle.

Theorem 1. For positive integer s, the graphX6s is Type 1.

Proof. Graph X6s is bipartite with parts A = {2i : 0 ≤ i ≤
6s−2

2
} andB = {2i+ 1 : 0 ≤ i ≤ 6s−2

2
}. Consider the Hamilto-

nian cycleH1
6s, since it has 6s vertices, it is well known that admits

a 3-total coloring T such that vertices i, with i ≡ 0 mod 3 (resp.
i ≡ 1 mod 3 and i ≡ 2 mod 3) receive the same color. As
3 6∈ U6s, the adjacent vertices inX6s do not have the same color as-
signed by T . Now, remove fromX6s all the edges inH1

6s. Clearly,
the resulting bipartite graph is (∆(X6s)−2)-regular and, by Hall’s
theorem, it can be edge colored with ∆(X6s) − 2 colors. There-
fore,X6s is Type 1. The following figure presents a 5-total coloring
ofX12.

Theorem 2. For prime p ≥ 5, the graphX3p is Type 1.

Idea of the proof. Graph X3p is a 3-partite graph with parts A =

{3i : 0 ≤ i ≤ p − 1}, B = {3i + 1 : 0 ≤ i ≤ p − 1} and
C = {3i + 2 : 0 ≤ i ≤ p − 1}. By Vizing’s theorem, each
Hamiltonian cycle Hj

3p admits a 3-edge coloring. For j > 1, as-
sign 3 colors to the edges of everyHj

3p such that a special color c0 is
used in all cycles in a particular directed edge 〈a, a+j mod 3p〉,
and the endpoints {a, a + j mod 3p} receive 2 different colors
already used in the respective cycle. For j = 1 ∈ U3p, assign 3
colors to the edges ofH1

3p so that the special color c0 is assigned to

exactly 3 directed edges: 〈1, 2〉, 〈4, 5〉, 〈7, 8〉; and the endpoints
{1, 4, 7} ∈ B and {2, 5, 8} ∈ C receive the 2 colors already
used in the respective cycle, one color to each part. The remaining
vertices not colored inX3p are in partA, and we assign color c0 to
these vertices.
Notice that the assignment of colors does not have conflict. We

used 2 colors for the elements of each of the p − 1 Hamilto-
nian cycles and used color c0 in all cycles. Thus, we obtain a
2(p − 1) + 1 = ∆(X3p) + 1-total coloring. The figure below
presents the four edge-disjoint Hamiltonian cycles H1

3p,H
2
3p,H

4
3p

and H7
3p of X15 with a 9-total coloring such that the color c0 is

represented by purple color.
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