Total coloring of some unitary Cayley graphs D. Castonguay¹, C. de Figueiredo², L. Kowada³, C. Patrão^{2,4}, D. Sasaki⁵, M. Valencia-Pabon⁶

¹INF, Universidade Federal de Goiás, Brazil, diane@inf.ufg.br; ²COPPE, Universidade Federal do Rio de Janeiro, Brazil, celina@cos.ufrj.br; ³IC, Universidade Federal Fluminense, Brazil, luis@ic.uff.br; ⁴Instituto Federal de Goiás, Brazil, caroline.patrao@ifrj.edu.br; ⁵IME, Universidade do Estado do Rio de Janeiro, Brazil, diana.sasaki@ime.uerj.br; ⁶LIPN, Université Sorbonne Paris Nord, France, valencia@lipn.univ-paris13.fr.

Unitary Cayley graphs

For a positive integer n, the unitary Cayley graph $X_n =$ $Cay(\mathbb{Z}_n, \mathbb{U}_n)$ is defined by the additive group of the ring \mathbb{Z}_n of integers modulo n and the multiplicative group \mathbb{U}_n of its units, where $\mathbb{U}_n = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$. The vertex set of X_n is the set $V(X_n) = \mathbb{Z}_n = \{0, 1, \dots, n-1\}$ and its edge set is $E(X_n) = \{ab: a, b \in \mathbb{Z}_n \text{ and } \gcd(a - b, n) = 1\}$. The unitary Cayley graphs X_n are regular of degree $|\mathbb{U}_n| = \phi(n)$, where $\phi(n)$ is the Euler function.

Total coloring

A k-total coloring of G is an assignment of k colors to the edges and vertices of G, such that no adjacent elements (vertices and edges) receive the same color. The total chromatic number of G, denoted by $\chi_T(G)$, is the least k for which G has a k-total coloring. Let $\Delta(G)$ be the maximum degree of G, clearly, $\chi_T(G) \ge 1$ $\Delta(G) + 1$ and the Total Coloring Conjecture (TCC) [1, 6] states that $\chi_T(G) \leq \Delta(G) + 2$. This conjecture has been verified for some classes but the general statement has remained open for more than fifty years and has not been settled even for regular graphs. If $\chi_T(G) = \Delta(G) + 1$, then G is said to be Type 1, and if $\chi_T(G) = \Delta(G) + 2$, then G is said to be Type 2. The problem of deciding if a graph is Type 1 has been shown NP-complete [5].

For more information, we refer to [3], which is the first PhD thesis on total coloring developed in Brazil.

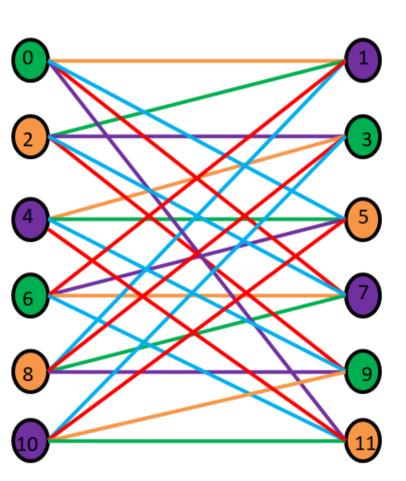
Total coloring of unitary Cayley graphs

Prajnanaswaroopa et al. [4] established the TCC for all unitary Cayley graphs. Some unitary Cayley graphs are already known to be Type 1 or Type 2. If $n = p^r$ is a prime power, then X_{p^r} is a complete p-partite graph and the total chromatic number is well known: if p is odd, then X_{p^r} is Type 1, and if p is even, then X_{p^r} is Type 2 [3].

We determine the total chromatic number of all members of two

families of unitary Cayley graphs X_n : when n = 6s, for a positive integer s, and when n = 3p, for prime p > 5. Boggess et al. [2] proved that for $n \geq 3$, graph X_n can be decomposed into $\frac{\phi(n)}{2}$ edge-disjoint Hamiltonian cycles, denoted by H_n^j , with $j \in \mathbb{U}_n$; and this result is used to prove the following theorems. Consider directed edges $\{\langle i, i+j \mod n \rangle : 0 \leq i \leq i \leq i \}$ n-1 to indicate the direction used to construct the cycles H_n^j , as H_n^j and H_n^{n-j} are the same cycle.

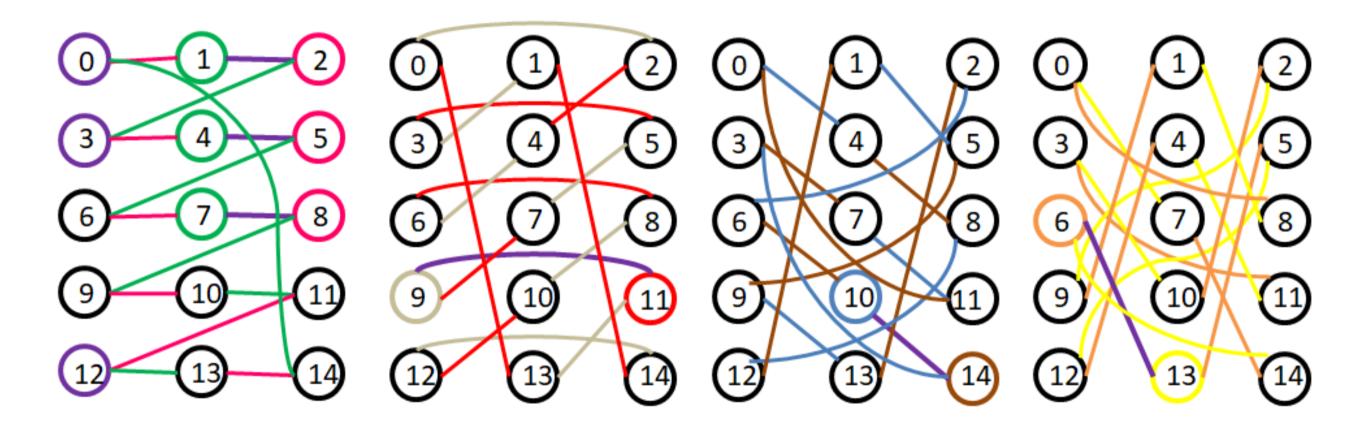
Theorem 1. For positive integer s, the graph X_{6s} is Type 1. *Proof.* Graph X_{6s} is bipartite with parts $A = \{2i : 0 \leq i \leq i \}$ $\frac{6s-2}{2}$ and $B = \{2i+1: 0 \le i \le \frac{6s-2}{2}\}$. Consider the Hamiltonian cycle H_{6s}^1 , since it has 6s vertices, it is well known that admits a 3-total coloring T such that vertices i, with $i \equiv 0 \mod 3$ (resp. $i \equiv 1 \mod 3$ and $i \equiv 2 \mod 3$) receive the same color. As $3 \not\in \mathbb{U}_{6s}$, the adjacent vertices in X_{6s} do not have the same color assigned by T. Now, remove from X_{6s} all the edges in H_{6s}^1 . Clearly, the resulting bipartite graph is $(\Delta(X_{6s}) - 2)$ -regular and, by Hall's theorem, it can be edge colored with $\Delta(X_{6s}) - 2$ colors. Therefore, X_{6s} is Type 1. The following figure presents a 5-total coloring of X_{12} .



Theorem 2. For prime $p \geq 5$, the graph X_{3p} is Type 1. Idea of the proof. Graph X_{3p} is a 3-partite graph with parts A = $\{3i: 0 \le i \le p-1\}, B = \{3i+1: 0 \le i \le p-1\}$ and $C = \{3i + 2 : 0 \le i \le p - 1\}$. By Vizing's theorem, each Hamiltonian cycle H_{3p}^{j} admits a 3-edge coloring. For j > 1, assign 3 colors to the edges of every H_{3p}^{j} such that a special color c_{0} is used in all cycles in a particular directed edge $\langle a, a+j \mod 3p \rangle$, and the endpoints $\{a, a + j \mod 3p\}$ receive 2 different colors already used in the respective cycle. For $j = 1 \in U_{3p}$, assign 3 colors to the edges of H_{3p}^1 so that the special color c_0 is assigned to

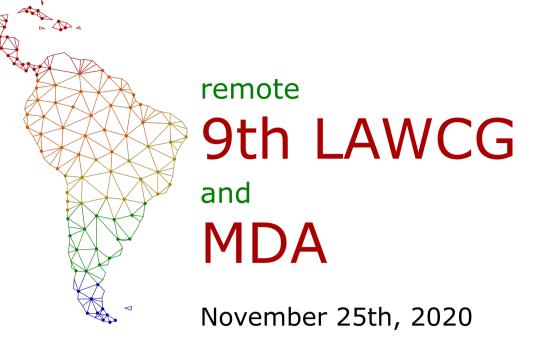
these vertices.

Notice that the assignment of colors does not have conflict. We used 2 colors for the elements of each of the p-1 Hamiltonian cycles and used color c_0 in all cycles. Thus, we obtain a $2(p-1) + 1 = \Delta(X_{3p}) + 1$ -total coloring. The figure below presents the four edge-disjoint Hamiltonian cycles $H_{3p}^1, H_{3p}^2, H_{3p}^4$ and H_{3n}^7 of X_{15} with a 9-total coloring such that the color c_0 is represented by purple color.



References

- 1-23, 2008.
- Mello, Unicamp, 2006.
- [4] S. Prajnanaswaroopa, J. Geetha, K. Somasundaram, H. Lin-Fu, and Narayanan N. On total coloring of some classes of regular graphs. 2020. ArXiv:1910.03922v4.
- [5] A. Sánchez-Arroyo. Determining the total colouring number is NP-hard. Discrete Math., 78:315–319, 1989.
- [6] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz., 3:25–30, 1964.



exactly 3 directed edges: $\langle 1, 2 \rangle, \langle 4, 5 \rangle, \langle 7, 8 \rangle$; and the endpoints $\{1,4,7\} \in B$ and $\{2,5,8\} \in C$ receive the 2 colors already used in the respective cycle, one color to each part. The remaining vertices not colored in X_{3p} are in part A, and we assign color c_0 to

[1] M. Behzad, G. Chartrand, and J. K. Cooper Jr. The colour numbers of complete graphs. J. Lond. Math. Soc., 42:226–228, 1967. [2] M. Boggess, T. Jackson-Henderson, I. Jimnez, and R. Karpman. The structure of unitary Cayley graphs. SUMSRI Journal, pages

[3] C. N. Campos. O problema da coloração total em classes de grafos. PhD thesis supervised by Professor Célia Picinin de