Total coloring of some unitary Cayley graphs
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Unitary Cayley graphs

For a positive integer n, the wunitary Cayley graph X,, =
Cay(Zy, U,,) is defined by the additive group of the ring Z,, of in-
tegers modulo n and the multiplicative group U,, of its units, where
U, = {a € Z, : gcd(a,n) = 1}. The vertex set of X, is
the set V(X,,) = Z, = {0,1,--- ,n — 1} and its edge set is
E(X,) = {ab:a,b € Z,, and gcd(a — b,n) = 1}. The uni-
tary Cayley graphs X, are regular of degree |U,,| = ¢(n), where
¢(n) is the Euler function.

Total coloring

A k-total coloring of G 1s an assignment of k colors to the edges
and vertices of G, such that no adjacent elements (vertices and
edges) receive the same color. The total chromatic number of G,
denoted by x7(G), is the least k for which G has a k-total color-
ing. Let A(G) be the maximum degree of G, clearly, x7(G) >
A(G) + 1 and the Total Coloring Conjecture (TCC) [1, 6] states
that x7(G) < A(G) + 2. This conjecture has been verified for
some classes but the general statement has remained open for more
than fifty years and has not been settled even for regular graphs.
If x71(G) = A(G) + 1, then G is said to be Type 1, and if
x7(G) = A(G) + 2, then G is said to be Type 2. The problem
of deciding 1f a graph 1s Type 1 has been shown NP-complete [3].

For more information, we refer to [3], which 1s the first PhD thesis
on total coloring developed 1n Brazil.

Total coloring of unitary Cayley graphs

Prajnanaswaroopa et al. [4] established the TCC for all unitary
Cayley graphs. Some unitary Cayley graphs are already known to
be Type 1 or Type 2. It n = p" 1s a prime power, then X, 1s
a complete p-partite graph and the total chromatic number 1s well
known: if p 1s odd, then X - 1s Type 1, and if p 1s even, then X - 1s
Type 2 [3].

We determine the total chromatic number of all members of two

tamilies of unitary Cayley graphs X,,: when n = 6s, for a positive
integer s, and when n = 3p, for prime p > 5.

Boggess et al. [2] proved that for n > 3, graph X, can be decom-
posed 1nto @ edge-disjoint Hamiltonian cycles, denoted by H ,,9,;,
with 3 € U,,; and this result 1s used to prove the following theo-
rems. Consider directed edges {(2,2 + 7 mod n) : 0 < 7z <
n — 1} to indicate the direction used to construct the cycles H?, as

H’ and H ™/ are the same cycle.

Theorem 1. For positive integer s, the graph Xgs is Type 1.

Proof. Graph Xg, is bipartite with parts A = {22 : 0 < z <
“=2}and B = {2¢+1: 0 < ¢ < *-2}. Consider the Hamilto-
nian cycle H} , since it has 6s vertices, it is well known that admits

6s’
a 3-total coloring T' such that vertices z, withz = 0 mod 3 (resp.
1 =1 mod 3 and 2 = 2 mod 3) receive the same color. As
3 & Ugs, the adjacent vertices in X g5 do not have the same color as-
signed by T'. Now, remove from Xg, all the edges in H éls. Clearly,
the resulting bipartite graph is (A (Xgs) — 2)-regular and, by Hall’s
theorem, it can be edge colored with A(Xgs) — 2 colors. There-

fore, X¢gs 1s Type 1. The following figure presents a S-total coloring
of X 12.

-
0\

K2
=52

Q

Q

CA

-

2

XS

L%

Y/
X
Q

‘
7

9,

4/

\

a®
Theorem 2. For prime p > 5, the graph X3, is Type 1.

Idea of the proof. Graph X3, 1s a 3-partite graph with parts A =
{3t :0<:1<p—1},B={3t14+1:0< < p-—1}and
C ={3t+2:0 <1< p— 1} By Vizing’s theorem, each
Hamiltonian cycle H gp admits a 3-edge coloring. For 3 > 1, as-
sign 3 colors to the edges of every H gp such that a special color cg 1s
used in all cycles in a particular directed edge (a,a+7 mod 3p),
and the endpoints {a,a + 7 mod 3p} receive 2 different colors
already used 1n the respective cycle. For 3 = 1 € Us,, assign 3
colors to the edges of H ?}p so that the special color ¢y 1s assigned to
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exactly 3 directed edges: (1,2),(4,5), (7,8); and the endpoints
{1,4,7} € B and {2,5,8} € C receive the 2 colors already
used 1n the respective cycle, one color to each part. The remaining
vertices not colored in X3, are in part A, and we assign color ¢ to
these vertices.

Notice that the assignment of colors does not have conflict. We
used 2 colors for the elements of each of the p — 1 Hamulto-
nian cycles and used color ¢y 1n all cycles. Thus, we obtain a
2(p— 1) +1 = A(X3,) + 1-total coloring. The figure below
presents the four edge-disjoint Hamiltonian cycles Hy , H3 , Hy
and HJ of X5 with a 9-total coloring such that the color ¢y is
represented by purple color.
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