Properties of fullerene graphs with icosahedral symmetry Thiago M. D. Silva^{*a*}, Diego Nicodemos^{*b*} and Simone Dantas^{*c*} ^a Pontífica Universidade Católica do Rio de Janeiro, ^b Colégio Pedro II, ^c Universidade Federal Fluminense

Abstract

Fullerene graphs are based on a famous carbon allotrope and have become a popular class of graphs (see references in [2]). They are characterized as 3-regular and 3-connected planar graphs, with only pentagonal or hexagonal faces. The fullerene graph with icosahedral symmetry is a particular class of fullerene graphs with precisely 12 pentagonal faces. Moreover, the midpoints of its pentagonal faces form the planning of an icosahedron. They can be described by a vector (i, j), where $j \ge i \ge 0$ and j > 0, determining the graph $G_{i,j}$. In 2013, Andova and Skrekovski presented and proved formulas to compute the diameter of the graphs $G_{0,j}$ and $G_{i,i}$. Moreover, they presented a conjecture stating a lower bound for the diameter of all fullerene graphs. Therefore, in this study, we investigate properties of fullerene graphs with icosahedral symmetry. We show that, for $i, j \in$ $\mathbb{N}^*, j \geq i$, every graph $G_{i,j}$ contains a reduced $G_{0,j-i}$ and that every graph $G_{i,j}$ is contained in an augmented $G_{j,j}$.

Introduction

An (undirected) graph G is a geometric object composed of a set of vertices and edges. Figure 1 shows a simple graph, i.e., a graph that does not have more than one edge between the same pair of vertices, and has no edges intersecting a vertex to itself. Before investigating the fullerene graphs, we require some graph theory definitions and concepts. A graph G is k-regular if all of its vertices have degree k. A graph G is k-connected if it remains connected whenever fewer than k edges are removed.

^a thiagoomenez@aluno.puc-rio.br, ^bdiegonicodemos@cp2.g12.br, ^c sdantas@id.uff.br

Figure 1: A simple Graph G.

A graph G is planar if it has an immersion in the plane so that its edges intersect only at their endpoints. The diameter of a graph is the maximum distance between any pair of vertices of G.

As an example, Figure 2 displays the Fullerene graph C_{60} : it is planar (no two edges intersect each other); it is 3-regular (all vertices have degree 3); and it is 3-connected (it remains connected if we remove one or two edges). Fullerene graphs are 3regular and 3-connected planar graphs with only pentagonal and hexagonal faces. Figure 2 shows the Fullerene graph C_{60} .

Figure 2: Fullerene graph C_{60} .

Fullerene graphs with icosahedral symmetry have exactly 12 pentagonal faces. All other faces are hexagons. Moreover, their pentagonal faces shape the planning of an icosahedron. They are described by $G_{i,j}, i, j \in \mathbb{N}^*, j \geq i$, where i and j determine the distance between the vertices, with i as the number of hexagons in direction \overrightarrow{x} and j as the number of hexagons in direction \overrightarrow{y} (see Figure 3). Figure 3 displays the planning of the graph Fullerene graph with icosahedral symmetry $G_{1,4}$.

Icosahedral Symmetry

Figure 3: Planning of the graph $G_{1,4}$.

Results

Theorem 1

Every fullerene graph with icosahedral symmetry $G_{i,j}, i, j \in \mathbb{N}^*, j \geq i$, contains a reduced graph $G_{0,j-i}$.

Theorem 2

Every fullerene graph with icosahedral symmetry $G_{i,j}, i, j \in \mathbb{N}^*, j \geq i$, is contained in an augmented graph $G_{j,j}$.

The proofs of both theorems are based on vectorial operations of the vector \overrightarrow{x} and \overrightarrow{y} and the hexagonal lattice's symmetry characteristics. Figure 4 displays the results of Theorems 1 and 2 for the graph $G_{1,4}$. The black triangle corresponds to a section of $G_{1,4}$. As a visual proof of Theorem 1, note that the blue triangle corresponds to the graph $G_{0,3}$, entirely included in $G_{1,4}$. Similarly for Theorem 2, the red triangle corresponds to the $G_{4,4}$, which wholly contains the graph $G_{1,4}$.

Figure 4: Example of Theorems 1 and 2 for $G_{1,4}$.

References

Andova, V; Skrekovski, R. Diameter of Fullerenes Graphs with Full Icosahedral Symmetry. MATCH,

Nicodemos, D; Stehlik, M. Fullerene graphs of small diameters. MATCH, 2017.