

Intersection models for 2-thin and proper 2-thin graphs

Thinness and proper thinness

A graph G = (V, E) is k-thin if there exist an ordering and a k-partition of V s.t., for u < v < w, if u, v belong to the same class and $uw \in E$, then $vw \in E$. The minimum such k is called the *thinness* of G and denoted thin(G) [1].

Interval graphs¹ are exactly the 1-thin graphs, and 2-thin graphs include convex bipartite graphs. Complements of induced matchings have unbounded thinness.

A 2-thin graph and a proper 2-thin graph.

A graph G = (V, E) is proper k-thin if there exist an ordering and a k-partition of V s.t., for u < v < w, if u, v belong to the same class and $uw \in E$, then $vw \in E$, and if v, w belong to the same class and $uw \in E$, then $uv \in E$. The minimum such k is called the proper thinness of G and denoted pthin(G) [2].

Proper interval graphs are exactly the proper 1-thin graphs, and interval graphs have unbounded proper thinness.

Flavia Bonomo-Braberman and Gastón Brito

DC, FCEN, Universidad de Buenos Aires / ICC, CONICET-UBA, Argentina. E-mail: fbonomo@dc.uba.ar

2-diagonal box intersection models

A set of boxes drawn with sides parallel to the Cartesian axes of the plane is 2-diagonal if their upper-right corners are pairwise distinct and lie in two diagonals $y = x + d_1$, $y = x + d_2$, either in the 2nd or in the 4th quadrant, and weakly 2-diagonal if there is no quadrant restriction.

A 2-diagonal and a weakly 2-diagonal model.

Characterizations

The main results of this work are the following characterizations of 2-thin and proper 2-thin graphs as intersection graphs of boxes drawn with sides parallel to the Cartesian axes of the plane.

Theorem. A graph is 2-thin if and only if it has a blocking 2-diagonal model.

The blocking property is necessary since there are graphs with thinness 3 and a 2-diagonal model.

A model is bi-semi-proper if for two boxes b, b' in the same diagonal, $x_2 < x'_2$ implies $x_1 \le x'_1$ and $y_1 \le y'_1$.

Theorem. The following statements are equivalent: 1. G is a proper 2-thin graph.

2. G has a bi-semi-proper blocking 2-diagonal model.

3. G has a bi-semi-proper weakly 2-diagonal model.

The bi-semi-proper property is necessary as interval graphs may have arbitrarily large proper thinness. These models are based on a model by Mannino, Oriolo and Chandran, defined to show that k-thin graphs can be represented as intersection graphs of boxes in the k-dimensional Euclidean space.

¹ Due to lack of space, some standard graph classes, graph parameters, and small graphs are not definitions of those concepts can be found in http://graphclasses.org

Blocking models

A model is blocking if for two non-intersecting boxes b_1 , b_2 in the upper and lower diagonal, resp., either the vertical prolongation of b_1 intersects b_2 or the horizontal prolongation of b_2 intersects b_1 .

Blocking 2-diagonal model and not.

Example of bi-semi-proper (first situation) and not bi-semi-proper (last three situations).

2-thin graphs as VPG graphs

A graph is B_k -VPG if it is the vertex intersection graph of paths with at most k bends in a grid. An L-graph is a B_1 -VPG graph admitting a representation with all the paths having the same of the four possible shapes L, J, Γ , \Im . \blacksquare *B*₀-VPG graphs have unbounded thinness. • 2-thin graphs are L-graphs (thus B_1 -VPG). The wheel W_4 is 2-thin and not B_0 -VPG. ■ 3-thin graphs are B₃-VPG.

Bonus track: new upperbound

The pathwidth (resp. bandwidth) of a graph G can be defined as one less than the maximum clique size of an interval (resp. proper interval) supergraph of G, chosen to minimize its maximum clique size [3]. It was proved in [1] that $thin(G) \leq pw(G) + 1$

References

[1] C. Mannino, G. Oriolo, F. Ricci, and S. Chandran. The stable set problem and the thinness of a graph. Oper. Res. Lett., 35:1–9, 2007.

We prove that, if $|E(G)| \ge 1$, then

 $pthin(G) \leq bw(G)$

[2] F. Bonomo and D. De Estrada. On the thinness and proper thinness of a graph. Discrete Appl. Math., 261:78–92, 2019. [3] H. Kaplan and R. Shamir.

Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput., 25(3):540–561, 1996.