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The problem of grid embedding is that of drawing a graph G onto a rectangular two-
dimensional grid (called simply grid) such that each vertex v ∈ V(G) corresponds to a grid
point (an intersection of a horizontal and a vertical grid line) and the edges of G correspond to
paths of the grid. Grid embedding of graphs has been considered with different perspectives
[2, 5, 6]. In [5], linear-time algorithms are described for embedding planar graphs having their
edges drawn as non-intersecting paths in the grid, such that the maximum number of bends of
any edge is minimized, as well as the total number of bends.

Introduction

We are interested in embedding trees T with ∆(T) ≤ 4 in a rectangular grid, such that the
vertices of T correspond to grid points, while edges of T correspond to non-intersecting
straight segments of the grid lines. The aim is to minimize the maximum number of bends of a
path of T. We provide a quadratic-time algorithm for this problem. With this algorithm, we
obtain an upper bound on the number of bends of EPG models of VPT∩EPT graphs [3, 4].
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Let T be a tree such that ∆(T) ≤ 4. Consider the problem of embedding such a tree in a grid 𝒢,
so that the vertices must be placed at grid points and the edges drawn as non-intersecting
paths of 𝒢 with no bends, which we will call a model of T. See Figures 1-5 for key notations.

Figure 1: Two possible models M1 (left) and M2 (right) of the
same tree T.
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Figure 2: The number of bends of the path connecting u and v in
M is denoted by bM(u, v).

Figure 3: The number of bends of modelM is
b(M) =max{bM(u, v) | u and v are leaves of T}.

Figure 4: The number of bends of tree T is
b(T) =min{b(M) | M is a model of T}.

Question
Over all possible models, consider the problem of finding one in which the maximum
number of bends of a path of T, over all of them, is minimum.

Theorem
Given a tree T, let M be the model produced by the execution of the algorithm on input T.
Then, b(M) = b(T).

Figure 6: Construction of a Bk-EPG representation
with k ≤ b(T).

We provide an upper bound on the
number of bends of an EPG representation
of VPT∩EPT graphs. The VPT∩EPT graphs
are those that can be represented in host trees
with maximum degree at most 3 [3]. In [1],
this class is characterized by a family of
minimal forbidden induced subgraphs. An
EPG model R = {Pi | 1 ≤ i ≤ 10} is shown in
Figure 6, obtained from the family P = {Qi | 1
≤ i ≤ 10}.

Given a model M, let bl(p,v) be the maximum
number of bends of a path in M having as
extreme vertices p and a leaf l ∈ V(T), over
all paths that contain v ∈ V(T).
Let M be a model of T and v ∈ V(T). Let
N(v) = {ui(v) | 1 ≤ i ≤ d(v)} be the
neighborhood of v and bi(v) = bl(v, ui(v)).
For d(v) < i ≤ 4, define “virtual” neighbors
ui(v) = ∅ for which bi(v) = −1. Assume that
the neighbors (both real and virtual) are
ordered so that bi(v) ≥ bi+1(v) for all
1 ≤ i < 4. See example in Figure 5.

Figure 5: The neighborhood of vertex i ordered according to
bl (i, j) for all j ∈ N(i).

Let v ∈ V(T) and M a model of T. We say that v is balanced if u1(v) and u2(v) are mutually in
the same horizontal or vertical grid line in M (and, therefore, so are u3(v) and u4(v)).

A tree T can be built from a single vertex v0 by a
sequence v1, v2, . . . , vn−1 of vertex additions, each
new vertex vi adjacent to exactly one vertex pi of T
for all 1 ≤ i < n. We will call that T is incrementally
built by (v0, ∅), (v1, p1), . . . , (vn−1, pn−1).
Algorithm 1 consists of iteratively adding vertices
to T and, for each new vertex v, traversing T in
post-order having v as the root. The operation to be
carried out in each visited vertex is to balance v if
it is not balanced.


