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Introduction S v N/ 5 s —— )
EPG graphs were first introduced by Golumbic et al in [2] motivated from circuit layout problems [1]. L Ta, , e, Tk | paths
In B,-EPG representations, each path has one of the following shapes x = {L, ,,"}, besides horizontal : ' T
or vertical segments. One may consider more restrictive subclasses of B;-EPG by limiting the types of P, = e Pl @otation j
bends allowed 1n the representation, that is, only the paths 1n a subset of x are allowed. P, - and "
Ex.: The ('-EPG graphs are those in which only the “" or the “7” shapes are allowed. : = paths

Objective Tl ey —

We show that two superclasses of trees are B;-EPG (one of them being the cactus graphs). On the K Figure 5: B,;-EPG representation of G after induction step. /

other hand, we show that the block graphs are -EPG and provide a linear time algorithm to produce
L-EPG representations of generalization of trees. These proofs employed a new technique from
previous results based on block-cutpoint trees of the respective graphs.

Preliminaries

Consider a graph G. Let T be a bipartite
graph 1n which the parts X and Y are
such that X contains one vertex b for
each block B of G, called a block vertex,
and Y contains one vertex c¢ for each cut
vertex ¢’ of G, called as such in T.
Vertices b and ¢ form an edge if ¢’ €
V(B). It 1s easy to see that 7 1s 1n fact a

Figure 1: A graph and its respective BC-tree. The cut | tree. We define T as the block-cutpoint
\ vertices are marked in red. / tree of G [3] (BC-tree). See Figure 1.

B1-EPG representations

We describe a B,-EPG representation of a superclass of trees, inspired on the representation of trees
described 1n [2]. The novelty of our results 1s the usage of BC-trees to obtain EPG representations,
which will be employed to obtain B,-EPG representations of more general classes of graphs.

Theorem 1

Proof. (Sketch) The theorem 1s proved by induction. Actually, we prove a stronger claim, stated as

follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut

vertex r, there exists a B{-EPG representation R={P,| v € V(G)} of G in which:

1. P, 1s avertical path with no bends in R;

11.  all paths but P, are constrained within the horizontal portion of the grid defined by P, and at the
right of 1t.

— From T (the BC-tree of G shown 1n Figure 2), build the
K > \ representation R of G as follows. First, build an
8 / - \B arbitrary vertical path P, in the grid G, corresponding

%1\ /t\ the root r. Next, divide the vertical portion of G defined

by P, and at the right of it into ¢ vertical subgrids, G;,

A ‘ I\ [\ Gy, . .., G, with a row space between them such that

Ty T /T . Ty [ Teo Tys\ the i-th subgrid will contain the paths corresponding to

\Figure 2: The rooted BC-tree T of a oraph. J the cut vertices that are descendants of B; in T. So, each
subgrid G 1s constructed as shown 1n Figure 3.

We first represent the children of B; as disjoint L-shaped paths, all sharing the same grid column 1n

which P, lies. For each B;, we build the paths 1n B,’, that correspond to vertices of B; that are not cut

vertices of G (as those n black in Figure 1), and the paths in 7, belonging to G[7}], for all 1 <j <},
So, it remains to define how the paths belonging to the regions B;” and 7;; will be built.

Let R’ be a B{-EPG representation of B; and let P’
be an-path corresponding » 1n R’. Since 7 1s universal
to B, 1t 1s possible to transform R’ such that all

> universal vertices become vertical paths as shown 1n

K Figure 3: A subgrid G.. /

=

Figure 4. For the 7; portion of the representation, let
r; be the root of T, Applying induction hypothesis,
SR we obtain B -EPG representations of each subtree that
have vertical paths representing each root and the
/ entirec representation 1s bounded as described
previously 1n (11).

K Figure 4: Transforming R’.

Thus, we can attach each one of the representations to its respective portion of the model being built,
rotated 90 degrees 1n counter-clockwise (see Figure 5).

Theorem 2

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
However, the assumption that every block B; 1s -EPG allows their EPG representations to be

transformed 1nto interval models. It 1s possible to show how to build an interval model of each block,

given an L-EPG representation of it. Furthermore, the EPG representations of the subtrees 7, 1 <j <j,

of B;, for all i, obtained after the induction step can be transformed into .-EPG models by 90 degree
clockwise rotation so that the entire representation 1s _-EPG.
Theorem 3

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. The
difference here 1s that every block 1s either an edge or a cycle. It 1s possible therefore to construct B-
EPG representations of every block B;. Furthermore, the B,-EPG representations of the subtrees 7,

1 <j<j, of B, for all i, obtained after the induction step can be shown possible to be attached into
vertical or horizontal regions of the cycle/edge so that the entire representation 1s B;-EPG.
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