
Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
However, the assumption that every block Bi is -EPG allows their EPG representations to be
transformed into interval models. It is possible to show how to build an interval model of each block,
given an -EPG representation of it. Furthermore, the EPG representations of the subtrees Tij, 1 ≤ j ≤ ji,
of Bi, for all i, obtained after the induction step can be transformed into -EPG models by 90 degree
clockwise rotation so that the entire representation is -EPG.
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EPG graphs were first introduced by Golumbic et al in [2] motivated from circuit layout problems [1].
In B1-EPG representations, each path has one of the following shapes x = { , ,⌟, }, besides horizontal
or vertical segments. One may consider more restrictive subclasses of B1-EPG by limiting the types of
bends allowed in the representation, that is, only the paths in a subset of x are allowed.
Ex.: The -EPG graphs are those in which only the “ ”or the “ ” shapes are allowed.

Introduction

We show that two superclasses of trees are B1-EPG (one of them being the cactus graphs). On the
other hand, we show that the block graphs are -EPG and provide a linear time algorithm to produce
-EPG representations of generalization of trees. These proofs employed a new technique from
previous results based on block-cutpoint trees of the respective graphs.
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Figure 1: A graph and its respective BC-tree. The cut
vertices are marked in red.

Thus, we can attach each one of the representations to its respective portion of the model being built,
rotated 90 degrees in counter-clockwise (see Figure 5).
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Theorem 1
Let G be a graph such that every block of G is B1-EPG and every cut vertex v of G is a universal vertex
in the blocks of G in which v is contained. Then, G is B1-EPG.
Proof. (Sketch) The theorem is proved by induction. Actually, we prove a stronger claim, stated as
follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut
vertex r, there exists a B1-EPG representation R={Pv | v ∈ V(G)} of G in which:
i. Pr is a vertical path with no bends in R;
ii. all paths but Pr are constrained within the horizontal portion of the grid defined by Pr and at the

right of it.

Figure 2: The rooted BC-tree T of a graph.

From T (the BC-tree of G shown in Figure 2), build the
representation R of G as follows. First, build an
arbitrary vertical path Pr in the grid 𝒢, corresponding
the root r. Next, divide the vertical portion of 𝒢 defined
by Pr and at the right of it into t vertical subgrids, 𝒢1,
𝒢2, . . . , 𝒢t, with a row space between them such that
the i-th subgrid will contain the paths corresponding to
the cut vertices that are descendants of Bi in T. So, each
subgrid Gi is constructed as shown in Figure 3.

Let R’ be a B1-EPG representation of Bi and let Pr’
be an -path corresponding r in R’. Since r is universal
to Bi, it is possible to transform R’ such that all
universal vertices become vertical paths as shown in
Figure 4. For the Tij portion of the representation, let
rij be the root of Tij. Applying induction hypothesis,
we obtain B1-EPG representations of each subtree that
have vertical paths representing each root and the
entire representation is bounded as described
previously in (ii).

Figure 3: A subgrid 𝒢i.

Figure 4: Transforming R’.

Figure 5: B1-EPG representation of G after induction step.

Cactus graphs are B1-EPG

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. The
difference here is that every block is either an edge or a cycle. It is possible therefore to construct B1-
EPG representations of every block Bi. Furthermore, the B1-EPG representations of the subtrees Tij,
1 ≤ j ≤ ji, of Bi, for all i, obtained after the induction step can be shown possible to be attached into
vertical or horizontal regions of the cycle/edge so that the entire representation is B1-EPG.

Theorem 2
Let G be a graph such that every block of G is ⌞-EPG and every cut vertex v of G is a universal vertex in
the blocks of G in which v is contained. Then, G is B1-EPG.

Theorem 3

We first represent the children of Bi as disjoint -shaped paths, all sharing the same grid column in
which Pr lies. For each Bi, we build the paths in Bi’, that correspond to vertices of Bi that are not cut
vertices of G (as those in black in Figure 1), and the paths in Tij, belonging to G[Tij], for all 1 ≤ j ≤ ji.
So, it remains to define how the paths belonging to the regions Bi’ and Tij will be built.

Objective

We describe a B1-EPG representation of a superclass of trees, inspired on the representation of trees
described in [2]. The novelty of our results is the usage of BC-trees to obtain EPG representations,
which will be employed to obtain B1-EPG representations of more general classes of graphs.

-EPG

Consider a graph G. Let T be a bipartite
graph in which the parts X and Y are
such that X contains one vertex b for
each block B of G, called a block vertex,
and Y contains one vertex c for each cut
vertex c’ of G, called as such in T.
Vertices b and c form an edge if c’ ∈
V(B). It is easy to see that T is in fact a
tree. We define T as the block-cutpoint
tree of G [3] (BC-tree). See Figure 1.

B1-EPG representations 
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