

9th LAWCG **MDA**

November 25th, 2020

Introduction

EPG graphs were first introduced by Golumbic et al in [2] motivated from circuit layout problems [1]. In B₁-EPG representations, each path has one of the following shapes $x = \{ \Box, \neg, \neg \}$, besides horizontal or vertical segments. One may consider more restrictive subclasses of B₁-EPG by limiting the types of bends allowed in the representation, that is, only the paths in a subset of x are allowed. Ex.: The ∟[¬]-EPG graphs are those in which only the "∟" or the "¬" shapes are allowed.

We show that two superclasses of trees are B_1 -EPG (one of them being the cactus graphs). On the other hand, we show that the block graphs are L-EPG and provide a linear time algorithm to produce L-EPG representations of generalization of trees. These proofs employed a new technique from previous results based on block-cutpoint trees of the respective graphs.

B1-EPG representations

We describe a B_1 -EPG representation of a superclass of trees, inspired on the representation of trees described in [2]. The novelty of our results is the usage of BC-trees to obtain EPG representations, which will be employed to obtain B_1 -EPG representations of more general classes of graphs.

Theorem 1

in the blocks of G in which v is contained. Then, G is B_1 -EPG.

Proof. (Sketch) The theorem is proved by induction. Actually, we prove a stronger claim, stated as follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut vertex r, there exists a B₁-EPG representation $R = \{P_v \mid v \in V(G)\}$ of G in which: P_r is a vertical path with no bends in R;

right of it.

So, it remains to define how the paths belonging to the regions B_i and T_{ii} will be built.

B₁-EPG representations using block-cutpoint trees

de Luca, Vitor T. F. – IME/UERJ– toccivitor8@gmail.com, Oliveira, Fabiano S. – IME/UERJ – fabiano.oliveira@ime.uerj.br, Szwarcfiter, Jayme L. – COPPE/UFRJ e IME/UERJ – jayme@nce.ufrj.br

Objective

Preliminaries

Consider a graph G. Let T be a bipartite graph in which the parts X and Y are such that X contains one vertex b for each block *B* of *G*, called a *block vertex*, and Y contains one vertex c for each cut vertex c' of G, called as such in T. Vertices b and c form an edge if $c' \in$ V(B). It is easy to see that T is in fact a tree. We define T as the *block-cutpoint tree of G* [3] (BC-tree). See Figure 1.

Let G be a graph such that every block of G is B_1 -EPG and every cut vertex v of G is a universal vertex

all paths but P_r are constrained within the horizontal portion of the grid defined by P_r and at the

From T (the BC-tree of G shown in Figure 2), build the representation R of G as follows. First, build an arbitrary vertical path P_r in the grid \mathcal{G} , corresponding the root r. Next, divide the vertical portion of G defined by P_r and at the right of it into t vertical subgrids, \mathcal{G}_1 , $\mathcal{G}_2, \ldots, \mathcal{G}_t$, with a row space between them such that the *i*-th subgrid will contain the paths corresponding to the cut vertices that are descendants of B_i in T. So, each subgrid G_i is constructed as shown in Figure 3.

We first represent the children of B_i as disjoint $_$ -shaped paths, all sharing the same grid column in which P_r lies. For each B_i , we build the paths in B_i ', that correspond to vertices of B_i that are not cut vertices of G (as those in black in Figure 1), and the paths in T_{ij} , belonging to $G[T_{ij}]$, for all $1 \le j \le j_i$.

Thus, we can attach each one of the representations to its respective portion of the model being built, rotated 90 degrees in counter-clockwise (see Figure 5). Theorem 2

Let G be a graph such that every block of G is $_$ -EPG and every cut vertex v of G is a universal vertex in the blocks of G in which v is contained. Then, G is B_1 -EPG.

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. However, the assumption that every block B_i is $_-EPG$ allows their EPG representations to be transformed into interval models. It is possible to show how to build an interval model of each block, given an $_$ -EPG representation of it. Furthermore, the EPG representations of the subtrees T_{ij} , $1 \le j \le j_i$, of B_i , for all *i*, obtained after the induction step can be transformed into $_$ -EPG models by 90 degree clockwise rotation so that the entire representation is ∟-EPG.

Theorem 3

Cactus graphs are B₁-EPG

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. The difference here is that every block is either an edge or a cycle. It is possible therefore to construct B_1 -EPG representations of every block B_i . Furthermore, the B₁-EPG representations of the subtrees T_{ii} , $1 \le j \le j_i$, of B_i , for all *i*, obtained after the induction step can be shown possible to be attached into vertical or horizontal regions of the cycle/edge so that the entire representation is B_1 -EPG.

References

^[1] BRADY, M. L.; SARRAFZADEH, M. Stretching a knock-knee layout for multilayer wiring, IEEE Transactions on Computers, volume 39, pages 148-151, 1990.

^[2] GOLUMBIC, M. C.; LIPSHTEYN, M. STERN; M. Edge intersection graphs of single bend pathson a grid, Networks: An International Journal, volume 54:3, pages 130-138, 2009.

^[3] HARARY, F. . Graph Theory, Addison-Wesley, Massachusetts, 1969

