

Contact L-graphs and their relation with planarity and chordality

Flavia Bonomo-Braberman, María Pía Mazzoleni, Mariano Leonardo Rean

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Facultad de Ciencias Exactas, Universidad Nacional de La Plata.

	Lama
one can associate a path in a rectangular grid with each vertex ling paths intersect on at least one grid-point. <i>h</i> , for some integer $\mathbf{k} \geq 0$, if one can associate a path with at wo vertices are adjacent if and only if the corresponding paths	
an associate a horizontal or vertical path in a rectangular grid with e corresponding paths intersect on at least one grid-point without	
ation of the graph on the right.	Relat
all the paths in the representation have the shapes $\{ , -, \llcorner\}$. We the shape \llcorner . The shape \llcorner . The paths in the representation do not cross each other and do not	
tersects another in a bend point will be called a basic	
Type 2 K₃ as a strict ∟-contact graph .	
Ation of the non-planar graph on the right.	
. ₁ -CPG but not B_k -CPG.	
	Refe
m the strict ∟-contact representation of a graph.	

n graph

- \blacktriangleright A Laman graph is a graph on **n** vertices such that, for all **k**, every **k**-vertex induced subgraph has at most 2k 3 edges, and such that the whole graph has exactly 2n - 3 edges.
- ► An $_^*$ -contact representation is a B_1 -CPG representation which is strict and basic. \blacktriangleright an $_$ *-contact representation is maximal if every endpoint that is neither bottommost, topmost, leftmost, nor rightmost makes a
- contact, and there are at most three endpoints that do not make a contact.

Theorem ([4])

If a graph **G** has a maximal $_{\perp}^*$ -contact representation in which each inner face contains the right angle of exactly one $_{\perp}$, then G is a planar Laman graph.

► As a consequence, we have the following result.

Theorem

Every maximal strict _-contact graph is a planar Laman graph.

ion with chordality

Lemma

A clique in a strict _-contact graph has size at most three.

Theorem

Let **G** be a chordal graph. **G** is strict $_$ -contact if and only if **G** is K_4 -free. Moreover, **G** admits a basic representation.

Let \mathcal{T} be the family of graphs defined as follows. \mathcal{T} contains H_0 as well as all graphs constructed in the following way: start with a tree of maximum degree at most three and containing at least two vertices; this tree is called the base tree; add to every leaf v in the tree two copies of K_4 (sharing vertex v), and to every vertex w of degree 2 one copy of K_4 containing vertex w. Notice that all graphs in \mathcal{T} are chordal.

Figure: On the left the graph H_0 . On the right a typical graph in \mathcal{T} .

Theorem ([2])

Let **G** be a chordal graph. Let $\mathcal{F} = \mathcal{T} \cup \{K_5, \text{diamond}\}$. Then, **G** is a B_0 -CPG graph if and only if **G** is \mathcal{F} -free.

▶ It is immediate that $_$ -contact graphs are K_5 -free and that B_0 -CPG $\subseteq _$ -contact. Following the same ideas as in the chordal B_0 -CPG characterization, all the graphs in \mathcal{T} are forbidden subgraphs. ► As a consequence, we have the following result concerning block graphs.

Theorem

Let **G** be a block graph. **G** is $_$ -contact if and only if **G** is **B**₀-CPG.

nces

- [1] Asinowski, A., E. Cohen, M. Golumbic, V. Limouzy, M. Lipshteyn and M. Stern, Vertex intersection graphs of paths on a grid, Journal of Graph Algorithms and Applications 16 (2012), pp. 129–150.
- [2] Bonomo, F., M. Mazzoleni, M. Rean, and B. Ries, *On some special classes of contact B₀-VPG graphs*, Discrete Applied Mathematics (2019).
- [3] Champseix, N., E. Galby, B. Ries, *Planar CPG graphs*, ArXiv (preprint) (2018).
- [4] Kobourov, S. T. Ueckerdt K. Verbeek, Combinatorial and Geometric Properties of Planar Laman Graphs. Proceedings of 24th ACM-SIAM Symposium on Discrete Algorithms (SODA 2013).

