1 Introduction

Let G be a simple graph. For $S \subseteq V(G) \cup E(G)$ and $C\{1, 2, \ldots, k\}$, let $c : S \to C$ be a mapping such that $c(x) \neq c(y)$ for each adjacent or incident elements $x, y \in S$. We say c is a k-total coloring when $S = V(G) \cup E(G)$ and a k-edge coloring when $S = E(G)$. See Fig. 1 for an example. The least j and the least k for which G has a j-total coloring and a k-edge coloring are denoted by $\chi^t(G)$ and $\chi^e(G)$, respectively.

![Figure 1: 9-total coloring for G](image)

The Total Coloring Conjecture (TCC) [1, 7] asserts that $\chi^t(G) \leq \Delta(G) + 2$ for any G. If $\chi^t(G) = \Delta(G) + 1$, G is Type 1; otherwise it is Type 2. To decide if G is Type 1 is NP-Complete [6]. A graph $G[Q, S]$ is split if $V(G)$ can be partitioned into $[Q, S]$ so that Q is a clique and S an independent set.

Theorem 1 [2] Let G be a split graph. Then $\chi^t(G) \leq \Delta(G) + 2$. In particular, when $\Delta(G)$ is even G is Type 1.

Theorem 2 [5] A split graph $G[Q, S]$ is a comparability graph if Q has a partition $[Q_l, Q_r, Q_t]$ and its vertices can be ordered Q_l, Q_r, Q_t so that for any vertex $s \in S$: $N(s) \cap Q_l = \emptyset$; if $v_k \in (N(s) \cap Q_t)$ then $v_{k-1} \in (N(s) \cap Q_l)$; and if $v_k \in (N(s) \cap Q_l)$ then $v_{k+1} \in (N(s) \cap Q_r)$.

The subset of S whose vertices are not adjacent to Q_l are denoted as S_r those not adjacent to Q_t denoted as S_r, and $S = S_l \cup S_l \cup S_r$.

Here we show that certain split-comparability graphs with odd maximum degree are Type 1.

2 Previous Results

When $|E(G)| \geq \lfloor \frac{|V(G)|}{2} \rfloor \Delta(G)$ we say G is overfull and if G has a subgraph H with $\Delta(H) = \Delta(G)$ that is overfull, then it is subgraph-overfull. Whenever G is overfull or subgraph-overfull, then $\chi^e(G) = \Delta(G) + 1$.

Theorem 3 [3] A split-comparability graph G has $\chi^e(G) = \Delta(G)$ iff G is not subgraph-overfull.

Hilton proved the following result for graphs with a universal vertex, i.e. a vertex with degree $|V(G)| - 1$.

Theorem 4 [4] A graph G with a universal vertex is Type 1 iff $|E(G)| + \alpha'(G) \geq \lceil \frac{\Delta(G)}{2} \rceil$.

3 Our Contribution

Theorem 5 A split-comparability graph G, with $|Q| \geq |Q_l|$, is Type 1 if

$$|Q| \geq \left(\frac{|S_l|}{|S_l| - 0.5} \right) |Q|.$$

Sketch of proof. We assume $|S_l| \neq 0$, $|S_l| \neq 0$ and $\Delta(G)$ is odd, otherwise $\chi^t(G)$ is known by Theorems 1 and 4. By Theorem 2, $Q_l \cap Q_t = \emptyset$. Assume $|Q| \geq |Q_l|$, so $|Q| \leq \frac{|Q|}{2}$. We define a split-comparability supergraph G' of G by adding a vertex v_l twin to the largest degree vertex $v_l \in Q_l$. Since $|Q| \geq |Q_l|$ and $|Q| - |Q_l| \geq \frac{|Q|}{2}$, G' is not subgraph-overfull. So, it has a $\chi^t(G')$-coloring χ', by Theorem 3. Fig. 2 shows G' obtained from the graph of Fig. 1.

![Figure 2: 9-edge coloring for G'](image)

(Fig. 3 exhibits a partial total-coloring for the graph of Fig. 1.) As $|Q| \leq \frac{|Q|}{2}$, at most $|Q|$ colors are used in vertices adjacent or edges incident to vertices of S_r. Since $|Q| < \Delta(G)$ some color is available to be assigned to each vertex $y \in S_r$, and $\chi^t(G) = \Delta(G) + 1$.

![Figure 3: Extending to a total coloring](image)

References

