

This work aims at presenting the uniformly clique-expanded graphs and its results on global defensive alliance and total dominating set problems. Those graphs are related to Sierpiński graphs [5] and subdivided-line graphs [1]. We show the minimum cardinality of the global defensive alliance for some particular situations of uniformly clique-expanded graphs, and we also relate that cardinality to the total dominating set number for graphs having a path or cycle as the root.

Basic Definitions

Consider G = (V, E) a finite, simple, and undirected graph. We write P_n , C_n , and K_n for a *path*, *cycle*, and *clique* of the order *n*, resp. For the *closed* (resp. *open*) neighborhood of a vertex $v \in V$, we denote it by N[v] (resp. N(v)). Analogously, we use N[S] (resp. N(S)) for the closed (resp. open) neighborhood of a vertex subset $S \subseteq V$. A vertex subset $S \subseteq V$ is said a *dominating set* if N[S] = V. Moreover, we call the subset S by total dominating set only for N(S) = V. Now, S is a defensive alliance if it satisfies $|N[v] \cap S| \ge |N(v) \cap (V/S)|$ for every $v \in S$. When S is both a defensive alliance and a dominating set, we say S is a global defensive alliance. We denote $\gamma_t(G)$ (and $\gamma_a(G)$) as the minimum cardinality of a total dominating set (and global defensive alliance) of G.

The Main Definition & an Example

We say that a graph H is a *uniformly clique-expanded graph* if there exist a graph G and a clique K_n with $n \ge \Delta(G)$ (maximum degree of G) satisfying: (1) V(H) consists of vertices from K_n^{ν} , which is a copy of the clique K_n , for each vertex v of G, and (2) E(H) contains edges of all clique copies, and every edge (u)(v)linking a vertex $(u) \in K_n^u$ to some $(v) \in K_n^v$ since $uv \in E(G)$ and no edges coincide end-vertices in H besides the ones inside of cliques. G is the so-called root of H. See an example in Figure 1.

Figure 1: The graph *H* can be obtained from the root *G* and the clique *K*₄, and so it is a uniformly cliqueexpanded graph.

Alliance and Domination on Uniformly Clique-expanded Graphs

Dourado, Mitre C. – PPGI/UFRJ – mitre@dcc.ufrj.br, Oliveira, Rodolfo A. – INFES/UFF – rodolfooliveira@id.uff.br, Queiróz, Alessandra B. – PPGI/UFRJ – abarbozaqueiroz@gmail.com

Introduction

Results

- **Theorem 1**: Let *H* be a uniformly clique-expanded graph from a root *G* and a clique K_n . If *n* is even and $\Delta(G) \leq \frac{n}{2}$, then $\gamma_a(H) = \frac{n}{2}|V(G)|$.
- **Theorem 2**: Let *H* be a uniformly clique-expanded graph from a root *G* and a clique K_n . If *n* is odd and $\Delta(G) \le \frac{n-1}{2}$, then: $\gamma_a(H) = \sum_{d(v) < \frac{n-1}{2}} \frac{n+1}{2} + \sum_{d(v) = \frac{n-1}{2}} \frac{n-1}{2}$, for
- all $u \in V(G)$, where d(u) is the degree of v in G.
- Now, the next theorem arises from properties in [2,3,4]. **Theorem 3**: Let H be a uniformly clique-expanded graph from a root $G \in \{P_q, C_q\}$, $q \ge 2$, and a clique K_n . We have $\gamma_t(H) = q + q \mod 2$, and if:
 - *i. G* is a cycle and:
 - a. $2 \le n \le 3$, then $\gamma_a(H) = \gamma_t(H)$;
 - *b.* $4 \le n \le 5$, then $\gamma_a(H) = \left|\frac{n}{2}\right|q$;
 - c. $n \ge 6$, then $\gamma_a(H) = \left[\frac{n}{2}\right]q$.
 - *ii.* G is a path and:
 - a. n = 2, then $\gamma_a(H) = \gamma_t(H) 1$ whether $p \equiv 1 \pmod{2}$ or $\gamma_a(H) = \gamma_t(H)$ otherwise;
 - b. n = 3, then, $\gamma_a(H) = \gamma_t(H)$;
 - c. n = 4, then $\gamma_a(H) = \frac{n}{2}q$.
 - *d.* n = 5, then $\gamma_a(H) = \frac{n-1}{2}q$.
 - e. $n \ge 6$, then $\gamma_a(H) = \left[\frac{n}{2}\right]q$.

Conclusions & Remarks

The uniformly clique-expanded graphs are particular cases of line graphs of bipartite graphs since we can verify that they are (claw,diamond,odd-hole)-free. Thus, we presented preliminary results that somehow are important to the wellknown superclass.

References

Acknowledgment

- ^[1] HASUNUMA T. Structural Properties of Subdivided-Line Graphs. In: Lecroq T., Mouchard L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-45278-9_19
- ^[2] HAYNES, T. W.; HEDETNIEMI, S.T.; HENNING, M.A. Global defensive alliances in graphs. The Electronic Journal of Combinatorics, 2003.
- ^[3] HENNING, M.A.: Graphs with large total domination number. J. Graph Theory 563 35(1), 21–45 (Sep 2000)
- ^[4] KAHINA OUAZINE, HACHEM SLIMANI, ABDELKAMEL TARI. Alliances in graphs: Parameters, properties and applications A survey. AKCE International Journal of Graphs and Combinatorics. DOI: 10.1016/j.akcej.2017.05.002, 2018.
- ^[5] KLAVŽAR, S., MILUTINOVIĆ, U., PETR, C. 1-perfect codes in sierpiński graphs. Bulletin of the Australian Mathematical Society66(3), 369–384. (2002)

