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Graph matching problems are well known and studied, in which we want to find sets of

pairwise non-adjacent edges[1]. This work focus on the study of matchings that induce

subgraphs with special properties [2][3]. For this work, we consider the property of being

connected, also studying it for weighted or unweighted graphs. For unweighted graphs, we

want to obtain a matching with the maximum cardinality, while, for the weighted graphs, we

look for a matching whose sum of the edge weights is maximum.

Introduction

The problem of maximum connected matching is polynomial[1]. We show ideas that lead to

two linear algorithms. One of them, having a maximum matching as input, determines a

maximum unweighted connected matching. The complexity of the maximum weighted

connected matching problem is unknown for general graphs. However, we present a linear

time algorithm that solves it for trees.
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Figure 2: Two maximum connected matchings. The left

matching refers to a unweighted while the right, to weighted.
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Theorem 2
Let 𝐺 be a connected graph and 𝑀 a maximum connected macthing of 𝐺. Then 𝑀
saturates all articulations in 𝐺

Without loss of generality, by Theorem 2, we know that, for a tree 𝑇, each articulation 𝑣 must

be saturated. We look for the neighbors of 𝑣, which maximize the weighted sum of the edges

to build a maximum connected matching in 𝑇𝑣
𝑟. For such a construction, we consider 𝑟 as any

vertex of 𝑇, and apply a dynamic programming algorithm described below. We define the sum

of the edge weights of a maximum weighted matching in 𝑇𝑣
𝑟 as 𝐵𝑣 if 𝑣 is matched with one of

its children, and 𝐵𝑣 if 𝑣 is matched with its father. We can determine this variables as follows.

If v is a leaf, then 𝐵𝑣 = 𝐵𝑣 = 0. Else, consider the following equations.

Though it is still unknown the complexity of finding maximum weighted connected

matchings, we present an idea that leads to a linear solution for trees. Let 𝑇 be a tree and 𝑟,

𝑣 ∈ 𝑉(𝑇). We denote 𝑇𝑟 as a tree 𝑇 rooted in 𝑟 and 𝑇𝑣
𝑟 as the subtree of 𝑇𝑟 rooted in 𝑣. Also,

𝑆(𝑟, 𝑣) is the set of all sons of v in 𝑇𝑣
𝑟 and 𝑤𝑒𝑖𝑔ℎ𝑡(𝑣, 𝑤) is the weight of the edge (𝑣, 𝑤).

Theorem 1
If 𝐺 is connected and 𝑀 is an unweighted maximum matching in 𝐺 , then the

unweighted maximum connected matching has cardinality |𝑀| [2]

Figure 1: Two maximum connected matchings of a graph.

For a graph 𝐺 and a matching 𝑀, we denote 𝐺[𝑀] as the subgraph induced by the vertices of

𝑀 and 𝑁(𝑣) as the set of neighbors of 𝑣 in 𝐺. Note that, in the same graph, the cardinalities of

a maximum unweighted connected matching and of a maximum weighted connected

matching are not always the same. We exemplify in Figure 1. Therefore, we expect that these

problems have different computational treatments.

We present an idea to do all this process and leave 𝐺[𝑀] connected in linear time. Let 𝑀 be a

maximum matching such that 𝐺[𝑀] is disconnected and 𝑟 a 𝑀-saturated vertex. Consider 𝐶𝑟
to be the component of 𝐺[𝑀] which contains 𝑟. We use two sets, 𝑄𝑠 and 𝑄𝑛, to store 𝑀-

saturated and 𝑀-unsaturated vertices, respectively. Additionally, we employ a set 𝐶, to which

vertices of 𝐶𝑟 or new vertices are added. A main loop can be executed until 𝐺[𝑀] equals 𝐶.

Each iteration is divided into two other auxiliary loops and includes at least one vertex at C.

The first auxiliary loop, for each vertex 𝑣 of 𝑄𝑠, analyzes 𝑁(𝑣), and properly adds to this set

each vertex of that neighborhood that has not yet entered the set. The second auxiliary loop,

for each vertex 𝑣 of 𝑄𝑛, if 𝑤 ∈ 𝑁(𝑣) \ 𝐶 exists, then 𝑤 is saturated by some edge, (𝑤, 𝑢),
and we perform the edge exchange operation in 𝑀. Such operation removes (𝑤, 𝑢) and adds

the edge (𝑣, 𝑤) to 𝑀. In the end of this process, 𝐺[𝑀] will be connected.

An algorithm can dynamically build a maximum connected matching 𝑀 as follows. From an

arbitrary articulation 𝑟 elected as root, two searches are made. The first computes the vertices

from the leaves to the root 𝑟. It obtains, for each vertex 𝑢, a child vertex 𝑠𝑢 of 𝑢 that

maximizes 𝐵𝑢. In addition, 𝐵𝑢 is calculated from the sum of 𝐵𝑤 for all its children 𝑤. The

second search is responsible for building 𝑀, computing the vertices from 𝑟 to the leaves, so

that, when a vertex 𝑢 is processed, if 𝑢 is not part of 𝑀 yet, we add (𝑠𝑢, 𝑢) to 𝑀. In the end, 𝑀
will be a maximum weighted connected matching.

The proof of Theorem 1[2] is based on the

fact that, in a graph 𝐺, if 𝑀 is a maximum

matching and 𝐺[𝑀] is disconnected, in which

𝐶 is connected component of 𝐺[𝑀], then it is

possible to redefine the edges of 𝑀 in order

to increment vertices of 𝐶 in 𝑀, successively,

until 𝐺[𝑀] has a single component.


