

Introduction

Laplacian Matrix of a Graph

Definition ([1]) Let G = G(V, E) be a simple graph with *n* vertices. The adjacency matrix of G is the matrix $A(G) = (a_{ij})$ with order n, whose entries are given by

 $a_{ij} = \begin{cases} 1, \text{ if } \{v_i, v_j\} \in E \text{ for } v_i, v_j \in V; \\ 0, \text{ otherwise.} \end{cases}$

Let D(G) be the diagonal matrix given by the degree of The Laplacian matrix of G is the matrix L(G) defined by

$$L(G) = D(G) - A(G).$$

For example,

$$G) = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 5 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Preliminaries

Matrix-Tree Theorem

Theorem 1.1 ([3]) The number of spanning trees of a graph G with order n is equal to any co-factor of L(G). In symbols $adj(L(G)) = \tau(G)J_{n \times n},$

where adj(L(G)) is the classical adjoint of L(G), $\tau(G)$ is the number of spanning trees of G and $J_{n \times n}$ is the matrix with order $n \times n$ whose entries are all equal to one.

We emphasize that this counting does not disregard isomorphic trees, that is, the number of non-isomorphic spanning trees is less than or equal to the number of spanning trees.

Corollary 1.2 ([1]) Let G be a connected graph which n vertices. If $\mu_1, \mu_2, \ldots, \mu_{n-1}$ are all the non-zero eigenvalues of L(G), then $\tau(G) = \frac{\mu_1 \mu_2 \dots \mu_{n-1}}{n}.$

This is the spectral version of the Matrix-Tree Theorem, which is very useful, since we've reduced the problem of finding the number of spanning trees in a graph to a problem of characterization of Laplacian eigenvalues. For more reference see [4] and [5].

Number of spanning trees of a subclass of matrogenic graphs

Robson Carlos de Moura Junior - IMECC/Unicamp - robson.ejr@gmail.com Francisca Andrea Macedo França - ICEx/UFF - francisca_franca@id.uff.br André Ebling Brondani - ICEx/UFF - andrebrondani@id.uff.br

Matrogenic Graphs

Literature Results

The symmetric difference between two sets A, B is given by $A \oplus B = (A \cup B) \setminus (A \cap B)$.

Definition. If u, v are vertices of a graph G, we say that u dominates v if $N_G(v) \setminus \{u\} \subseteq N_G(u) \setminus \{v\}$. When neither u dominates v, nor v dominates u, we say that u and v are *incomparable*.

Definition. A *split graph* is a graph in which the set of vertices can be partitioned into a clique and an independent set. A graph is a *complete split graph* if it is a split graph such every vertex in the independent set is adjacent to every vertex in the clique.

Definition. A graph G is *matrogenic* if and only if for any incomparable vertices, u and v in G, we have that the cardinality of symmetric difference between the sets $N_G(v) \setminus \{u\}$ and $N_G(u) \setminus \{v\}$ is 2.

Proposition 2.1 The split complete graph is matrogenic.

Theorem 2.2 ([2]) A graph G = G(V, E) is matrogenic if and only if its vertex set V can be partitioned into three disjoint sets K, S and C such that

(i) $K \cup S$ induces a matrogenic split graph in which K is a clique and S is an independent set.

(ii) C induces a crown, where a crown is either a perfect matching or a hyperoctahedron or a C_5 .

(iii) Every vertex in C is adjacent to every vertex in K and to no vertex in S.

A Subclass of Matrogenic Graphs

From Theorem 2.2 every matrogenic graph of order n can be denoted by $G_n(K \cup S, C)$, where K, S and C are defined in the same theorem. Given the non-negative integers r, s and t, we consider the class of graphs, \mathcal{G} , constituted by the matrogenic graphs of the form $G_n(K \cup S, C)$, where $K \cup S$ induces the complete split graph, CS(r, s), and the subset of vertices C induces t copies of the complete graph K_2 , that is,

 $\mathcal{G} = \{ G_n(CS(r,s), tK_2) \mid r, s, t \in \mathbb{N} \land n = r + s + 2t \}.$

The figure below shows the graph $G_9(CS(3,2), 2K_2)$.

e ve Dy	rtic	es o	f G .
$ \begin{array}{c} 0 \\ 0 \\ -1 \\ 2 \\ 0 \\ -1 \end{array} $	$0 \\ 0 \\ -1 \\ 0 \\ 2 \\ -1$	-1 -1 -1 -1 -1 5	•

Theorem 3.1.

$$L(H) = \begin{vmatrix} D(tK_2) - A(t) \\ -J_{r \times 2t} \\ 0_{s \times 2t} \end{vmatrix}$$

where $D(tK_2)$ is the diagonal matrix of the induced subgraph by tK_2 , D(K) is the diagonal matrix of induced subgraph by K, D(S) is the diagonal matrix of induced subgraph by S, $I_{r \times r}$ is the identity matrix with order $r \times r$ and $0_{a \times b}$ is the matrix with order $a \times b$ with all entries is equal to 0. Through eigenvalue calculation techniques we obtain $r \in Spec(L(H))$ with $m(r) \geq s-1$, when m(r) is the algebraic multiplicity of r as eigenvalue. On other hand, $r + s + 2t \in Spec(L(H))$ with $m(r + s + 2t) \ge r - 1$. In addition, we obtain $r + 2 \in Spec(L(H_1))$ with $m(r+2) \ge t$. By a result about reduced matrices, we obtain that $\{r+s+2t, r, 0\} \subset Spec(L(H))$. So, $Spec(L(H)) = \{ (r+s+2t)^{[r]}, (r+2)^{[t]}, r^{[s+t-1]}, 0 \}.$ By the Corollary 1.2, the number of spanning trees of H is

$$\tau(H) = (r$$

of each cell of the partition of vertices in H. 54675.

- [1] ABREU, N.; DEL-VECCHIO, R.; TREVISAN, V.; VINAGRE, C. Teoria Espectral de Grafos - Uma Introdução, III Colóquio de Matemática da Região Sul, Florianópolis, SC, 2014.
- [2] FOLDES, S.; HAMMER, P. On a class of matroid-producing graphs., *Colloq.* Math.Soc. J. Bolyai (Combinatorics), v. 18, p. 331-352, 1978.
- [3] KIRCHHOFF, G. Über der Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteinlung galvanischer Ströme geführt wird, Ann. Phys. Chem., 72:497-508, 1847.
- [4] LIU, J-B.; ZHAO, J.; ZHU, Z. On the number of spanning trees and normalized Laplacian of linear octagonal quadrilateral networks. Int J Quantum Chem., 2019;119:e25971. https://doi.org/10.1002/qua.25971
- [5] PAN, Y.; LIU, C.; LI, J. Kirchhoff Indices and Numbers of Spanning Trees of Molecular Graphs Derived from Linear Crossed Polyomino Chain. *Polycyclic* Aromatic Compounds, 2020. DOI: 10.1080/10406638.2020.1725898

Application

Main Result

Let $H = G_n(CS(r, s), tK_2)$, then $\tau(H) = (r + s + 2t)^{r-1}(r+2)^t r^{s+t-1}$.

$$\begin{array}{c} K_2 \end{pmatrix} \qquad -J_{2t \times r} \qquad 0_{2t \times s} \\ D(K) - J_{r \times r} + I_{r \times r} \qquad -J_{r \times s} \\ -J_{s \times r} \qquad D(S) \end{array} \right|,$$

- $(r + s + 2t)^{r-1}(r+2)^t r^{s+t-1}$.
- **Corollary 3.2.** The number of spanning trees of H depends of the cardinality
- For example, if $H = G_9(CS(3,2), 2K_2)$, then $\tau(H) = (3+2+4)^2(3+2)^2(3)^3 = 1$

References