

Introduction

For a graph G we denote by $\alpha(G)$ the maximum size of an independent set in G and by i(G) the minimum size of a maximal independent set in G. The independence gap of a graph G, denoted by $\mu_{\alpha}(G)$ is the difference $\alpha(G) - i(G)$. Well-covered graphs have independence gap zero. We present characterizations of some graphs with independence gap at least 1 that are of girth at least 6, including graphs with independent gap r-1, for $r \geq 2$, with r distinct and consecutive sizes of maximal independent sets.

Finbow et al. [3] define the set \mathcal{M}_r , for every positive integer r, to be the set of graphs that have maximal independent sets of exactly r different sizes. If the r different sizes of its maximal independent sets are consecutive, then it is also a member of \mathcal{I}_r , defined by Barbosa and Hartnell [1].

We present results related to the number of trees with specific maximum and minimum sizes of maximal independent sets (MIS). For a graph G, $miss(G) = \{|I| : I \text{ is a MIS of } G\}$. See Figure 1. A vertex is said to be of *type* r if it is adjacent to exactly r leaves.

Figure 1: Graph G_1 is well-covered, with $miss(G_1) = \{4\}$, and $\mu_{\alpha}(G_1) = 0$; $G_2 \in \mathcal{M}_3$, but $G_2 \notin \mathcal{I}_3$, with miss $(G_2) = \{2, 4, 5\}$, and $\mu_{\alpha}(G_2) = 3$; $G_3 \in \mathcal{I}_3$, therefore $G_3 \in \mathcal{M}_3$, with miss $(G_3) = \{3, 4, 5\}$, and $\mu_{\alpha}(G_3) = 2$.

Results

Before we show some results regarding trees, we present in Table 1 the distribution in the set \mathcal{I}_r of trees with *n* vertices, where $6 \leq n \leq 20$. Not all trees in \mathcal{M}_r belong to \mathcal{I}_r . The data were obtained via a computational program.

In Theorem 1, we show the number of non-isomorphic trees having specific sizes of MIS and prove that there are exactly $\left\lceil \frac{n}{2} \right\rceil - 1$ non-isomorphic trees T with n vertices having $\mu_{\alpha}(T) = n - 4$.

{marcia,viniciussantos}@inf.ufg.br, marcelocdias93@gmail.com

		Vertices														
		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1	1		2		3		6		11		23		47		106
	2	2	5	4	12	14	31	40	78	122	202	351	522	1018	1370	2890
	3	1	2	7	12	32	59	129	262	500	1063	1877	4069	6837	14817	24298
10	4				7	15	52	130	319	806	1737	4354	8812	21397	42069	98236
r	5					4	14	63	191	579	1654	4200	11561	27109	71181	160724
	6						1	9	57	244	813	2856	7822	24781	63028	183301
	7								4	55	266	1066	4206	12977	44759	125465
	8									1	41	241	1206	5536	18954	72259
	9											24	219	1282	6878	25945
	10												10	184	1212	8079
	11													3	134	1177
	12															77

Table 1: Quantity of Trees of a given order in \mathcal{I}_r .

Theorem 1

Let $n \geq 3$ and T be a tree with n vertices. . There are exactly n-3 trees with $\alpha(T) = n-2$. 2. There are exactly n-3 trees with i(T) = 2. 3. There are exactly $\left\lceil \frac{n}{2} \right\rceil - 1$ trees $\mu_{\alpha}(T) = n - 4$.

Next result is a generalization of a result in [2] for graphs Gof girth at least 6 with $\mu_{\alpha}(G) = 1$. We adapt their proof considering $\mu_{\alpha}(G) \geq 1$. Additionally, we present the different sizes of MIS of G. Its proof gives a polynomial-time algorithm and it has some consequences to the class \mathcal{I}_r . In the following cases the sizes of MIS of G are not consecutive: if $r \geq 3$ and the girth of G is at least 7, and if $r \ge 4$ and the girth of G is at least 6. We summarize these conditions in Corollary 3. We denote G_i the subgraph of G induced by internal vertices of G that are type i.

Theorem 2

Let $r \geq 2$ and G be a connected graph of girth at least 6, with exactly two vertices u_1 and u_2 of type r, and with no type k vertices for $k \ge r+1$. Then $\mu_{\alpha}(G) = r-1$ if and only if u_1 and u_2 are adjacent, any other support vertex of G is type 1, and one of the following two conditions holds: 1. $V(G_0) = \emptyset;$

2. $G_0 \cong K_2$, neither of u_1 and u_2 has a neighbor in G_0 , and the two vertices of G_0 are of degree 2 in G and are contained in an induced 6-cycle containing u_1 and u_2 . Moreover, if $V(G_0) = \emptyset$, then miss(1, $|V(G_1)| + 2r$ otherwise miss $(G) = \{$ $|2r, |V(G_1)| + 2r + 1\}.$

Maximal Independent Sets in Graphs of Girth at Least 6

Márcia R. Cappelle, Marcelo C. Dias, Vinícius Gabriel Santos Instituto de Informática – Universidade Federal de Goiás

Proof 1: (Sketch)

Let F_1 and F_2 be the sets of leaves, respectively, of vertices u_1 and u_2 . Suppose $\mu_{\alpha}(G) = r - 1$. We claim that the other neighbors of vertices u_1 and u_2 are vertices of type 1, and u_1 and u_2 are adjacent. Suppose $V(G_0) \neq \emptyset$; Let $L_1 = N_G(u_1) - (F_1 \cup \{u_2\})$ and $L_2 = N_G(u_2) - (F_2 \cup \{u_1\})$. Let L'_i the set of leaves adjacent to vertices of L_i , i = 1, 2. Now, let $I = F_1 \cup F_2 \cup L'_1 \cup L'_2$ and let $G' = G - N_G[I]$. See Figure 2. We also claim that:) graph G' is well-covered and has a perfect matching formed by its pendant edges. 2) G_0 has only one component that is isomorphic to K_2 and their vertices are under a 6-cycle containing u_1 and u_2 . For the converse, we show all possible sizes of MIS considering the two cases: $V(G_0) = \emptyset$ and $V(G_0) \neq \emptyset$. If $V(G_0) = \emptyset$, then miss $(G) = \{ |V(G_1)| + r + 1, |V(G_1)| + 2r \}$ otherwise miss(G) = { $|V(G_1)| + r + 2$, $|V(G_1)| + 2r$, $|V(G_1)| + 2r + 1$ }. Therefore $\mu_{\alpha}(G) = r - 1$.

Figure 2: Graph G of girth 6 and two vertices of type r.

Corollary 3

Let r	\geq	3	and	let	G	be
$\mu_lpha(G)$	= r	,	$1 \mathrm{su}$	ch th	nat	G
r. The	n, C	$\vec{x} \in$	$\in \mathcal{I}_r$ (only	if γ	, —

Acknowledgements

To CNPq and CAPES for the partial support.

References

- pendent sets in a graph. Congressus Numerantium, 131:115–121, 01 1998.
- 2018.
- 1994.

e a graph of girth at least 6 with contains exactly two vertices of type 3 and the girth of G is exactly 6.

[1] R. Barbosa and B. Hartnell. Some problems based on the relative sizes of the maximal inde-

[2] T. Ekim, D. Gözüpek, A. Hujdurović, and M. Milanič. On Almost Well-Covered Graphs of Girth at Least 6. Discrete Mathematics & Theoretical Computer Science, 20(2), November

[3] A. Finbow, B. Hartnell, and C. Whitehead. A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets. Discrete Mathematics, 125(1):153 - 167,