Introduction

For a graph G we denote by $\alpha(G)$ the maximum size of an independent set in G and by $i(G)$ the minimum size of a maximal independent set in G. The independence gap of a graph G, denoted by $\mu(G)$, is the difference $\alpha(G) - i(G)$. Well-covered graphs have independence gap zero. We present characterizations of some graphs with independence gap at least 1 that are of girth at least 6, including graphs with independent gap $r-1$, for $r \geq 2$, with r distinct and consecutive sizes of maximal independent sets.

Finbow et al. [3] define the set \mathcal{M}_r, for every positive integer r, to be the set of graphs that have maximal independent sets of exactly r different sizes. If the r different sizes of its maximal independent sets are consecutive, then it is also a member of \mathcal{I}_r defined by Barbosa and Hartnell [1].

We present results related to the number of trees with specific maximum and minimum sizes of maximal independent sets (MIS). For a graph G, $\text{miss}(G) = \{|I| : I \text{ is a MIS of } G\}$. See Figure 1. A vertex is said to be of type r if it is adjacent to exactly r leaves.

![Graphs G1, G2, and G3](image)

Figure 1: Graph G_1 is well-covered, with $\text{miss}(G_1) = \{4\}$, and $\mu(G_1) = 0$; $G_2 \in \mathcal{M}_2$, but $G_2 \notin \mathcal{I}_2$ with $\text{miss}(G_2) = \{2, 4, 5\}$, and $\mu(G_2) = 4$; $G_3 \in \mathcal{I}_3$, with $\text{miss}(G_3) = \{3, 4, 5\}$, and $\mu(G_3) = 2$.

Results

Before we show some results regarding trees, we present in Table 1 the distribution in the set \mathcal{I}_r of trees with n vertices, where $6 \leq n \leq 20$. Not all trees in \mathcal{M}_r belong to \mathcal{I}_r. The data were obtained via a computational program.

In Theorem 1, we show the number of non-isomorphic trees having specific sizes of MIS and prove that there are exactly $\left\lceil \frac{n}{2} \right\rceil - 1$ non-isomorphic trees T with n vertices having $\mu_r(T) = n - 4$.

<table>
<thead>
<tr>
<th>Vertices</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>34</td>
<td>46</td>
<td>100</td>
<td>180</td>
<td>260</td>
<td>470</td>
<td>960</td>
<td>1650</td>
<td>2730</td>
<td>3720</td>
<td>4720</td>
</tr>
</tbody>
</table>

Table 1: Quantity of Trees of a given order in \mathcal{I}_r.

Theorem 1

Let $n \geq 3$ and T be a tree with n vertices.

1. There are exactly $n - 3$ trees with $\alpha(T) = n - 2$.
2. There are exactly $n - 3$ trees with $i(T) = 2$.
3. There are exactly $\left\lceil \frac{n}{2} \right\rceil - 1$ trees $\mu_r(T) = n - 4$.

Next result is a generalization of a result in [2] for graphs G of girth at least 6 with $\mu_r(G) = 1$. We adapt our proof considering $\mu_r(G) \geq 1$. Additionally, we present the different sizes of MIS of G. Its proof gives a polynomial-time algorithm and it has some consequences to the class \mathcal{I}_r. In the following cases the sizes of MIS of G are not consecutive: if $r \geq 3$ and the girth of G is at least 7, and if $r \geq 4$ and the girth of G is at least 6. We summarize these conditions in Corollary 3. We denote G_i the subgraph of G induced by internal vertices of G that are type i.

Theorem 2

Let G be a connected graph of girth at least 6, with exactly two vertices u_1 and u_2 of type r, and with no type k vertices for $k \geq r + 1$. Then, $\mu_r(G) = r - 1$ if and only if u_1 and u_2 are adjacent, any other support vertex of G is type 1, and one of the following two conditions holds:

1. $V(G_i) = \emptyset$.
2. $G_i \cong K_r$, neither of u_1 and u_2 has a neighbor in G_0, and the two vertices of G_0 are of degree 2 in G and are contained in an induced 6-cycle containing u_1 and u_2.

Moreover, if $V(G_i) = \emptyset$, then $\mu_r(G) = \{\{V(G_i)\} + r + 1, |V(G_i)| + 2r\}$ otherwise $\mu_r(G) = \{\{V(G_i)\} + r + 2, |V(G_i)| + 2r, |V(G_i)| + 2r + 1\}$.

Proof of (Sketch)

Let F_1 and F_2 be the sets of leaves, respectively, of vertices u_1 and u_2. Suppose $\mu_r(G) = r - 1$. We claim that the other neighbors of vertices u_1 and u_2 are vertices of type 1, and u_1 and u_2 are adjacent. Suppose $V(G_i) = \emptyset$. Let $L_i = N_G(u_1) - (F_1 \cup \{u_2\})$ and $L_2 = N_G(u_2) - (F_2 \cup \{u_1\})$. Let L_i^2 the set of leaves adjacent to vertices of L_i, $i = 1, 2$. Now, let $I = F_1 \cup F_2 \cup L_i^1 \cup L_i^2$ and let $G^* = G - N_G[I]$. See Figure 2. We also claim that: $\mu_r(G^*)$ is well-covered and has a perfect matching formed by its pendant edges. G_0 has only one component that is isomorphic to K_2 and its vertices are under a 6-cycle containing u_1 and u_2. For the converse, we show all possible sizes of MIS considering the two cases: $V(G_0) = \emptyset$ and $V(G_0) \neq \emptyset$. If $V(G_0) = \emptyset$, then $\mu_r(G) = \{\{V(G_i)\} + r + 1, |V(G_i)| + 2r\}$ otherwise $\mu_r(G) = \{\{V(G_i)\} + r + 2, |V(G_i)| + 2r, |V(G_i)| + 2r + 1\}$.

Therefore, $\mu_r(G) = r - 1$.

![Graph G of girth 6 and two vertices of type r](image)

Figure 2: Graph G of girth 6 and two vertices of type r.

Corollary 3

Let $r \geq 3$ and let G be a graph of girth at least 6 with $\mu_r(G) = r - 1$ such that G contains exactly two vertices of type r. Then, $G \in \mathcal{I}_r$, only if $r = 3$ and the girth of G is exactly 6.

Acknowledgements

To CNPq and CAPES for the partial support.

References