The 3-flow conjecture for almost even graphs with up to six odd vertices

L. V. PERES¹, R. DAHAB¹
leoviep@gmail.com, rdahab@ic.unicamp.br
¹Universidade Estadual de Campinas, Brasil

1. Integer flows
Let \(G = (V(G), E(G)) \) be an undirected graph. Let \(D \) be an orientation for \(E(G) \), and \(f \) an assignment of non-negative integer weights to each edge of \(E(G) \). We say that \((D, f) \) is a \(k \)-flow for \(G \) if:
1. \(0 < f(e) < k \), for each \(e \in E(G) \);
2. the flow balance \(\sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) = 0 \), for each \(v \in V(G) \), where \(\partial^+(v) (\partial^-(v)) \) is the set of edges leaving (entering) vertex \(v \).
In a mod-\(k \) flow, the flow balance at each vertex \(v \) is \(\sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) \equiv 0 \) (mod \(k \)). Figure 1 shows two graphs that admit a mod-3 flow.

2. Tutte’s 3-flow Conjecture and equivalent formulations
A 3-cut is an edge cut of size three. A bridge is an edge cut of size one. Tutte’s 3-flow conjecture is

Conjecture (Tutte’s 3-flow conjecture)
Every bridgeless graph with no 3-cuts admits a 3-flow.

Two equivalent forms of this conjecture are:
- Every bridgeless 5-regular graph with no 3-cuts admits a 3-flow.
- Every bridgeless graph with at most three 3-cuts admits a 3-flow.

3. Objective
In this work, our objective is to characterize classes of graphs with up to four 3-cuts that admit a 3-flow. \(K_5 \), the complete graph on four vertices, is the smallest bridgeless graph that does not admit a 3-flow. We focus on essentially 4-edge connected graphs, i.e., whose edge cuts of size less than four are associated with vertices of degree three (3-vertices). Also, our graphs are almost even, i.e., having at most six odd vertices.

4. Motivation
Our motivation is to provide tools for a possible inductive approach to prove Tutte’s 3-flow conjecture.

5. Graphs with exactly four vertices of odd degree
Let \(G \) be an essentially 4-edge connected, almost even, graph having at most four odd vertices, with \(S \) its set of odd vertices. We say that \(G \) has a forbidden configuration if: (i) the vertices of \(S \) all have degree three; (ii) \(G[S] \) contains \(K_{5,3} \); and (iii) every even-degree vertex \(v \) of \(G \) is separated from \(S \) by an edge cut of size at most four. We abuse this definition by saying that \(K_4 \) has a forbidden configuration.

Theorem 1
An essentially 4-edge connected, almost even, graph \(G \) with at most four odd-degree vertices admits a 3-flow, if and only if \(G \) does not have a forbidden configuration.

6. Graphs with exactly six vertices of odd degree
We give a partial characterization of almost even graphs with six odd-degree vertices that admit a 3-flow.
By using the same definition of forbidden configuration to graphs with four 3-vertices and two odd-degree vertices of degree greater than 3, we obtain

Theorem 2
Let \(G \) be an essentially 4-edge-connected, almost even, graph with four 3-vertices and two other odd vertices of degree greater than 3, and assume \(G \) has a forbidden configuration. Then, \(G \) admits a 3-flow if and only if there are no 4-cuts separating the 3-vertices from the remaining odd vertices.

Sketch of proof: (i) We contract a set \(X \) that contains the two odd vertices with degree higher than three, and having an associated edge-cut of size six (e.g. \(V(G) \) minus the vertices of degree three). By Theorem 1, the resulting graph admits a 3-flow, that can be extended to \(G/X \). This is a 3-flow for \(G \).

(only if) We contract a set \(X \) that contains the two odd vertices of degree higher than three, with an associated edge-cut of size four. By the previous theorem, \(G/X \) does not admit a 3-flow, and so neither does \(G \).

References

Superposition and constructions of graphs without nowhere-zero k-flows.

Integer flows.

Integer flows and cycle covers of graphs, volume 205.

Acknowledgements

The first author is partially supported by a Capes scholarship, number 88882.329145/2019-01.