

A_{α} -Spectral Theory

Definition 1.([3]) Let G = G(V, E) be a simple graph $A_{\alpha}(G) = \alpha \cdot D(G) + (1 - \alpha) \cdot D(G) +$

where A(G) denotes the adjacency matrix of G and D(G) $i \neq j$ and $d_{ij} = d(v_i)$, if i = j.

Matrogenic Graphs

Definition 2. Let G = G(V, E) be a graph. Given u, d $N_G(u) - \{v\}$. When neither u dominates v nor v domin **Definition 3.** A graph G is *matrogenic* if for any $|(N_G(u) - \{v\}) \oplus (N_G(v) - \{u\})| = 2$, where the symb **Definition 4.** A split graph S(r, s) is a graph whose ve independent set of size s. A split graph is called complete every vertex in the clique; it is denoted by CS(s, r).

Definition 5. A graph G is threshold if for $u, v \in V(0)$

Properties of Mat

Definition 6. A perfect matching, tK_2 , is the union of t copies of K_2 and a cocktail party graph, CP(2t), is the complement of a perfect matching.

 $3K_2$

CP(6)

Some properties of the matrogenic graphs: all induced su complement of a matrogenic graph is matrogenic and threshold graphs. In particular, as the split complete gra **Theorem 1.([2])** A graph G = G(V, E) of order n is : three distinct sets K, S, and C such that

(i) $K \cup S$ induces a matrogenic split subgraph in which (ii) C induces a perfect matching, or a cocktail party, or (*iii*) every vertex of C is adjacent to every vertex of K a

Theorem 1 gives us a way to characterize matrogenic grap denote every matrogenic graph as $G_n([K \cup S], [C])$. In the previous figure we show the matrogenic graph $G_{11}(CS(3,2), CP(6)).$

A_{α} -Spectrum of some Matrogenic Graphs

Nelson de Assis Junior - ICEx/UFF - nelsonassis@id.uff.br André Ebling Brondani - ICEx/UFF - andrebrondani@id.uff.br Francisca Andrea Macedo França - ICEx/UFF - francisca_franca@id.uff.br

n. The matrix $A_{\alpha}(G)$ is defined by	In
$-\alpha) \cdot A(G), \ \alpha \in [0,1],$	\mathbf{T}
$P(G) = (d_{ij})$, is a matrix of order n , where $d_{ij} = 0$, if	
	-

$v \in V$, we say that u dominates v if $N_G(v) - \{u\} \subseteq$ nates u , then u and v are called <i>incomparable</i> .	
two vertices u and v , incomparable in G , we have onl \oplus denotes the symmetric difference.	
ertices can be partitioned into a clique of size r , and a te if every vertex in the independent set is adjacent to	T
G), either u dominates v or v dominates u .	
rogenic Graphs	

$G_{11}(CS(3,2), CP(6))$	As
subgraphs of a matrogenic graph are matrogenic; the the class of matrogenic graphs contains the class of aph is threshold, it is matrogenic.	pc
matrogenic if and only if V can be partitioned into	
K is a clique and S is a independent set;	[1]
r a $C_5;$	[2]
and to no vertex in S .	പ
phs from a partition of its vertex set V . Thus, we can	[3]

A_{α} -Spectrum

this work, we analyze the A_{α} -spectrum of a subclass of matrogenic graphs. **Theorem 2.** If $H = G_n(CS(k, s), CP(2t))$ then A_α -characteristic polynomial of H is given by $P_{A_{\alpha}(H)}(x) = f(x)[x - \alpha(2t + k) + 2]^{t-1}(x - \alpha n + 1)^{k-1}(x - \alpha k)^{s-1}[x - \alpha(2t + k - 2)]^{t},$ where $f(x) = det(xI - \overline{A_{\alpha}}(H)),$

$$\overline{A_{\alpha}}(H) = \begin{pmatrix} \alpha(k+2t-2) + (1-\alpha)(2t-2) & (1-\alpha)k & 0\\ (1-\alpha)2t & \alpha(k-1+s+2t) + (1-\alpha)(k-1) & (1-\alpha)s\\ 0 & (1-\alpha)k & \alpha k \end{pmatrix}.$$

 $B_{\alpha} \qquad (1-\alpha)J_{2t\times k} \qquad 0_{2t\times s}$ $A_{\alpha}(H) = \begin{vmatrix} (1-\alpha)J_{k\times 2t} & C_{\alpha} & (1-\alpha)J_{k\times s} \\ 0_{s\times 2t} & (1-\alpha)J_{s\times k} & \alpha kI_s \end{vmatrix},$

Sketch of proof. There is a labeling of the vertices of the graph H, so that the matrix A_{α} can be written where we denote the all-ones matrix by J, the all-zeros matrix by 0, the identity matrix by I, $B_{\alpha} = \alpha(k+2t-2)I_{2t} + (1-\alpha)(J_{2t} - I_{2t} - A(tK_2))$ and $C_{\alpha} = \alpha(k-1+s+2t)I_k + (1-\alpha)(J_k - I_k)$. Denote by e_k the vector with 2t coordinates whose k-th entry is equal to 1 and the others entries are zero. For each j, ℓ and i, with $1 \leq j \leq t$, $2 \leq \ell \leq k$ and $2 \leq i \leq s$, consider the vectors $z_i = (e_{2i-1} - e_{2i}|0|0)^T$, $v_{\ell} = (0|e_{2t+k+1} - e_{2t+k+\ell}|0)^T$ and $v_i = (0|0|e_{2t+k+1} - e_{2t+k+i}|0)^T$. We have, $A_{\alpha}(H)z_i = \alpha(2t+k-2)z_i, \quad A_{\alpha}(H)w_\ell = (\alpha n-1)w_\ell \text{ and } A_{\alpha}(H)v_i = \alpha kv_i.$

Now, consider the vector $v^{(i)} = e_{2i-1} + e_{2i}$. Some calculations show that the t-1 vectors of the form $(v^{(1)} - v^{(i)}|0|0)^T$, $2 \le i \le t$, are the eigenvectors of $A_{\alpha}(H)$ associated with the eigenvalue $\alpha(k+2t) - 2$. The other eigenvalues are the roots of the polynomial f(x), which follows from the matrix reduction technique (see Theorem 1.3.14 of [1]).

Conclusion

s it was claimed in [3], the matrix A_{α} can underpin a unified theory of the spectral study of the adjacency and ngless Laplacian matrices of a graph. In this work, we obtain a partial factorization of the A_{α} -characteristic olynomial of a subfamily of matrogenic graphs which explicitly gives some eigenvalues of the graph.

References

D. Cvetković, P. Rowlinson, and S. Simić. An Introduction to the Theory of Graph Spectra. Cambridge University Press. Cambridge. 2010.

S. Foldes and P. Hammer. On a class of matroid-producing graphs. Colloq. Math. Soc. J. Bolyai (Combinatorics). 18: 331-352. 1978.

V. Nikiforov. Merging the A- and Q-spectral theories. Applicable Analysis and Discrete Mathematics. 11: 81-107. 2017.