

Introduction

A decomposition of a graph G is a set $\mathcal{D} = \{H_1, \ldots, H_k\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E(H_i) = E(G)$. A **locally irregular** graph is a graph in which adjacent vertices have distinct degrees.

Figure 1: A locally irregular graph

A locally irregular decomposition (or locally irregular coloring) of a graph G is a decomposition in which every element is locally irregular. We say that G is **decomposable** if it admits a locally irregular decomposition. Equivalently, a locally irregular decomposition is a coloring of E(G) in which every color class induces a locally irregular subgraph in G. If k colors are used, then we say **locally irregular** k-edge-coloring or k-LIC for short.

Figure 2: (a) A 2-LIC of G. (b) An induced subgraph of G using the edges with color red. (c) An induced subgraph of G using the edges with color blue.

Given a decomposable graph G, the **irregular chromatic index** of G is the smallest number k for which G admits a k-LIC. We denote the irregular chromatic index of G by $\chi'_{irr}(G)$. The problem of computing the irregular chromatic index was proven to be an NP-complete problem [2]. In this work we explore the following conjecture posed by Baudon et al. [1].

Conjecture 1 (O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak, 2015). For every decomposable graph G, we have $\chi_{irr}(G) \leq 3$.

Results toward confirming Conjecture 1 include that graphs whose set of vertices can be partitioned into a clique and an independent set admit a 3-LID [3] and graphs with maximum degree at most 3 admit a 4-LID [4]. We explore Conjecture 1 for graphs in which all vertices have degree 3, which are called **cubic graphs**.

Decomposing cubic graphs into locally irregular subgraphs

Fábio Botler

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil {fbotler,wlomenha}@cos.ufrj.br

Contribution

In this poster we verify Conjecture 1 for a class of cubic graphs; and we present a condition for a graph not to be 2-LIC.

Locally irregular coloring of some cubic graphs

A **proper edge-coloring** of a graph G is an assignment of colors to the edges of G in which edges that share a vertex are colored with different colors. A P_2 -decomposition of a graph G is a decomposition of G into paths of length 2. Let G be a cubic graph, and let \mathcal{P} be a P_2 -decomposition of G. Given a vertex $v \in V(G)$, let $\mathcal{P}(v)$ denote the number of paths $P \in \mathcal{P}$ for which $d_P(v) = 1$, and let $V_i^{\mathcal{P}}$ be the set of vertices v of G for which $\mathcal{P}(v) = i$.

Theorem 1. If G is a cubic graph that admits a P_2 -decomposition \mathcal{P} for which $G[V_1^{\mathcal{P}}]$ is a set of vertex-disjoint cycles, then $\chi'_{irr}(G) \leq 3$.

Proof: First note that $\mathcal{P}(v) \in \{1,3\}$ for every $v \in V(G)$. In particular every vertex of $V_1^{\mathcal{P}}$ is the interior vertex of precisely one path of \mathcal{P} . Since $G[V_1^{\mathcal{P}}]$ is a set of vertex-disjoint cycles, every vertex in $V_1^{\mathcal{P}}$ is adjacent to precisely one vertex of $V_3^{\mathcal{P}}$ and two vertices of $V_1^{\mathcal{P}}$. Given a cycle $C \in G[V_1^{\mathcal{P}}]$, we partition the vertex set of C into pairs and at most one triple of consecutive vertices.

Let H be the graph obtained from $G \setminus E(G[V_1^{\mathcal{P}}])$ by identifying vertices in the same pair or triple, and keeping parallel edges. Note that every path of \mathcal{P} has exactly one edge in H. The graph H is a bipartite graph with maximum degree exactly 3. It is not hard to prove that G admits a proper edge-coloring with three colors.

Now, we use the the proper edge-coloring above to obtain a locally irregular coloring of E(G). By construction every path in \mathcal{P} has precisely one edge already colored in H, and we color its remaining edge (which is in a cycle of $G[V_1^{\mathcal{P}}]$ with the same color. Since each vertex of $G[V_1^{\mathcal{P}}]$ is in the same pair or triple of at least one of its neighbors in $G[V_1^{\mathcal{P}}]$, each path of \mathcal{P} is colored with the same color of at most one path with which it shares a vertex. Therefore each color consists of vertex-disjoint paths of length 2 and trees with four edges and one vertex of degree 3, and hence, is a locally irregular graph. \Box

Wanderson Douglas Lomenha Pereira

In order to prove that some cubic graphs have locally irregular chromatic index at least 3, we define the gadget below which we call a **strip**. So we have the following theorem.

adjacent to vertices in $V(G) \setminus S$, then $\chi'_{irr}(G) > 2$.

Proof: The proof follows from the fact that any 2-LIC of a "half strip" must be as in the figure below, and then the two "half strips" of the same strip cannot be colored in a compatible manner.

By replacing one edge by strip, we can prove that there are infinitely many graphs that do not admit a 2-LIC. In particular, there are an infinite number of cubic graphs with chromatic index 4 and planar graphs that do not admit an 2-LIC, and hence the upper bound of Conjecture 1 is tight for these classes of graphs.

- [1] O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak. On decomposing regular graphs into locally irregular subgraphs. European J. Combin., 49:90–104, 2015.
- [2] O. Baudon, J. Bensmail, and É. Sopena. Journal of Discrete Algorithms, 30:113–127, 2015.
- [3] C. N. Lintzmayer, G. O. Mota, and M. Sambinelli. Decomposing split graphs into locally irregular graphs.
- [4] B. Lužar, J. Przybyło, and R. Soták. J. Comb. Optim., 36(4):1425–1438, 2018.

Theorem 2. If G has a strip S whose vertices with degree 3 are not

References

```
On the complexity of determining the irregular chromatic index of a graph.
Electronic Notes in Theoretical Computer Science, 346:603–612, 2019.
New bounds for locally irregular chromatic index of bipartite and subcubic graphs.
```