Decomposing cubic graphs into locally irregular subgraphs

Fábio Botler Wanderson Douglas Lomenha Pereira

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{fbotler, wlomenha}@cos.ufrj.br

Introduction

A decomposition of a graph G is a set $\mathcal{D} = \{H_1, \ldots, H_k\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^k E(H_i) = E(G)$. A locally irregular graph is a graph in which adjacent vertices have distinct degrees.

A locally irregular decomposition (or locally irregular coloring) of a graph G is a decomposition in which every element is locally irregular. We say that G is decomposable if it admits a locally irregular decomposition. Equivalently, a locally irregular decomposition is a coloring of $E(G)$ in which every color class induces a locally irregular subgraph in G. If k colors are used, then we say locally irregular k-edge-coloring or k-LIC for short.

![Figure 1: A locally irregular graph](image1)

Given a decomposable graph G, the irregular chromatic index of G is the smallest number k for which G admits a k-LIC. We denote the irregular chromatic index of G by $\chi_{irr}(G)$. The problem of computing the irregular chromatic index was proven to be an NP-complete problem [2].

In this work we explore the following conjecture posed by Baudon et al. [1].

Conjecture 1 (O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak, 2015). For every decomposable graph G, we have $\chi_{irr}(G) \leq 3$.

Results toward confirming Conjecture 1 include that graphs whose set of vertices can be partitioned into a clique and an independent set admit a 3-LID [3] and graphs with maximum degree at most 3 admit a 4-LID [4]. We explore Conjecture 1 for graphs in which all vertices have degree 3, which are called cubic graphs.

Contribution

In this poster we verify Conjecture 1 for a class of cubic graphs; and we present a condition for a graph not to be 2-LIC.

Locally irregular coloring of some cubic graphs

A proper edge-coloring of a graph G is an assignment of colors to the edges of G in which edges that share a vertex are colored with different colors. A P_2-decomposition of a graph G is a decomposition of G into paths of length 2. Let G be a cubic graph, and let \mathcal{P} be a P_2-decomposition of G. Given a vertex $v \in V(G)$, let $P(v)$ denote the number of paths $P \in \mathcal{P}$ for which $d_{\mathcal{P}}(v) = 1$, and let V_i be the set of vertices v of G for which $P(v) = i$.

Theorem 1. If G is a cubic graph that admits a P_2-decomposition \mathcal{P} for which $G[V_i^2]$ is a set of vertex-disjoint cycles, then $\chi_{irr}(G) \leq 3$.

Proof: First note that $P(v) \in \{1, 3\}$ for every $v \in V(G)$. In particular every vertex of V_i^2 is the interior of precisely one path of \mathcal{P}. Since $G[V_i^2]$ is a set of vertex-disjoint cycles, every vertex in V_i^2 is adjacent to precisely one vertex of V_{i-1} and two vertices of V_{i+1}. Given a cycle $C \in G[V_i^2]$, we partition the vertex set of C into pairs and at most one triple of consecutive vertices.

Let H be the graph obtained from $G \setminus E(G[V_i^2])$ by identifying vertices in the same pair or triple, and keeping parallel edges. Note that every path of \mathcal{P} has exactly one edge in H. The graph H is a bipartite graph with maximum degree exactly 3. It is not hard to prove that G admits a proper edge-coloring with three colors.

Now, we use the proper edge-coloring above to obtain a locally irregular coloring of $E(G)$. By construction every path in \mathcal{P} has precisely one edge already colored in H, and we color its remaining edge (which is in a cycle of $G[V_i^2]$) with the same color. Since each vertex of $G[V_i^2]$ is in the same pair or triple of at least one of its neighbors in $G[V_i^2]$, each path of \mathcal{P} is colored with the same color of at most one path with which it shares a vertex. Therefore each color consists of vertex-disjoint paths of length 2 and trees with four edges and one vertex of degree 3, and hence, is a locally irregular graph.

![Figure 2: (a) A 2-LIC of G. (b) An induced subgraph of G using the edges with color red. (c) An induced subgraph of G using the edges with color blue.](image2)

In order to prove that some cubic graphs have locally irregular chromatic index at least 3, we define the gadget below which we call a strip. So we have the following theorem.

Theorem 2. If G has a strip S whose vertices with degree 3 are not adjacent to vertices in $V(G) \setminus S$, then $\chi_{irr}(G) > 2$.

Proof: The proof follows from the fact that any 2-LIC of a “half strip” must be as in the figure below, and then the two “half strips” of the same strip cannot be colored in a compatible manner.

![Figure 3: A 2-LIC of G.](image3)

By replacing one edge by strip, we can prove that there are infinitely many graphs that do not admit a 2-LIC. In particular, there are an infinite number of cubic graphs with chromatic index 4 and planar graphs that do not admit a 2-LIC, and hence the upper bound of Conjecture 1 is tight for these classes of graphs.

References