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The random walk on the Tower of Hanoi
The tower of Hanoi puzzle is a single-player game where at each turn the player moves

a disk to a tower that is different from the one it previously was. The game does not allow
a disk above smaller disks and its aim is to move all disks from a tower to another one
(see Figure 1).

Figure 1: Tower of Hanoi with 4 disks.

The Hanoi graph Hm = (Vm, Em) is the graph whose vertices represent the possible
configurations of the tower of Hanoi puzzle with 3 towers and m disks. Its edges represent
the moves between these configurations. Thus, H1 is isomorphic to a triangle and for
each m ≥ 2 we can construct Hm in the following way which is illustrated in Figure 2: we
consider three isomorphic copies of Hm−1 and we label them as Him−1 = (V im−1, E

i
m−1),

i ∈ {1, 2, 3}. For each i ∈ {1, 2, 3} let vitop, v
i
lb and virb be the vertices on the top, on the

left, and on the right of the basis of the biggest triangle in Him−1. The graph Hm is the
graph with vertex set Vm = ∪3

i=1V
i
m−1 and edge set Em =

(
∪3
i=1E

i
m−1

)
∪E?m, where E?m is

defined as E?m := {{v1
lb, v

2
top}, {v1

rb, v
3
top}, {v2

rb, v
3
lb}}.

Figure 2: Graphs Hm for m ∈ {1, 2, 3} with edges of E?m coloured in red.

The simple random walk on Hm is the process {Xt; t ≥ 0} described as follows: an
exponential clock with rate one is attached to each edge of Em. Whenever a clock rings,
the edge associated with that clock is flipped, making the random walker jump if she was
at one of the incident vertices to that edge. Its infinitesimal generator is the discrete Lapla-
cian operator ∆m given by

∆mf (x) =
∑
y∼x

(f (y)− f (x)),

which says that if the random walker stands at a vertex x then it can jump to any of its
adjacent vertices with rate 1. In the above formula, x ∼ y denotes that x and y share a
common edge.

An interesting question to make is to ask how long the random walker takes to get
completely lost. In order to answer this question, let µx0t (x) denote the probability that
Xt = x given that X0 = x0, and let Um denote the uniform measure on Vm. The distance
to equilibrium of the simple random walk on Hm is defined as

dm (t) = max
x0∈Vm

‖µx0t − Um‖TV = max
x0∈Vm

1

2

∑
x∈Vm

∣∣∣∣µx0t (x)− 1

3m

∣∣∣∣
 .

Not only the above function is decreasing, but it also takes values in the interval [0, 1].
Thus, given a threshold ε ∈ (0, 1), it makes sense to define the ε-mixing time of the simple

random walk as

tmmix(ε) = inf {t ≥ 0; dm (t) < ε},

formalizing the answer to the aforementioned question.

Algebraic connectivity and Poincaré inequalities
The spectral gap γm of the simple random walk on Hm (also known as the algebraic

connectivity of the graph Hm) is defined as the symmetric of the second largest eigen-
value γm of the operator ∆m. It also presents a variational formula [2]. Indeed, let Em be
the Dirichlet form of the simple random walk on Hm which is given by

Em(f, f ) =
1

2

∑
x∈Vm

∑
y∼x
|f (x)− f (y)|2Um(x).

Let Var(f ; Um) be the variance of a function f : Vm → R for the simple random walk on
Hm, which is given by

Var(f ; Um) =
1

2

∑
x,y

|f (x)− f (y)|2Um(y)Um(x).

The spectral gap γm of the simple random walk on Hm can be defined as

γm := inf
f

{
Em(f, f )

Var(f ; Um)
; Var(f ; Um) 6= 0

}
.

Namely, the relaxation time tmrel := 1/γm of the simple random walk on Hm is the smallest
constant that satisfies the Poincaré inequality

Var(f ; Um) ≤ C Em(f, f ) for every function f.

The spectral gap is strongly related to mixing because

dm (t) ≤ 3m/2 e−γm t (see [5], for instance).

Our result in this direction is the following:

Theorem 1: For every m ≥ 2 we have

tmrel ≤
1

3 (1/3 ; 1/3)m−1
, where (a ; q)n :=

n−1∏
k=0

(1− a qk)

is the q-Pochhammer symbol, also known as q-shifted factorial. Consequently,

tmmix(ε) ≤ log 3

9

(
3

2

)m
m + Oε

((
3

2

)m)
.

Logarithmic-Sobolev inequalities
The log-Sobolev constant αm of the simple random walk on Hm presents a similar vari-

ational definition. Here the variance is replaced by the entropy-like quantity Lm given
by

Lm(f ) =
∑
x∈Hm

|f (x)|2 log

(
|f (x)|2∑

z∈Hm
|f (z)|2Um(z)

)
Um(x).

Namely

αm := inf
f

{
Em(f, f )

Lm(f )
; Lm(f ) 6= 0

}
,

that is, 1/αm is the smallest constant that satisfies the logarithmic Sobolev inequality

Lm(f ) ≤ C Em(f, f ) for every function f.

The log-Sobolev constant is stronger than the spectral gap in the sense that

dm (t) ≤
√
me−αm t/2 (see [3], for instance).

We prove the following result:

Theorem 2: There exists a constant α1 ∈ (0.856, 1.500] such that for every m ≥ 1 we have
1

αm
≤ 2

α1

(
3

2

)m
. Consequently, tmmix (ε) ≤ 2

α1

(
3

2

)m
logm +Oε

((
3

2

)m)
.

Decomposing the graph
The main idea is to remove the edges of E?m and to decompose Hm into Him−1,

i ∈ {1, 2, 3}, and then to do some analysis. Given a function f : Vm → R and i ∈ {1, 2, 3},
denote the restriction of f to the domain V im−1 by f |V i

m−1
, and define U im−1 := Um|V i

m−1
.

Firstly, we prove that

Var(f ; Um) =
1

3

3∑
i=1

Var(f |V i
m−1

; U im−1) + Var(G ; U1) ≤ 1

γm−1
Em(f , f ) + Var(G ; U1).

where G(i) =
∑
z∈Hi

m−1
f (z)U im−1(z) is the expectation of the function f , restricted

to V im−1, with respect to the measure U im−1. Secondly, we show that Var(G ; U1) ≤
31−mVar(f ; Um). By the definition of γm, we obtain

1

γm
≤ 1

γm−1 (1− 31−m)
,

which after an induction argument, implies Theorem 1. Similarly, we prove that

Lm(f ) ≤ 1

αm−1
Em(f, f ) +

1

α1
E1(
√
F ,
√
F ),

where F (i) is the square of the `2 (U im−1) norm of the function f restricted to V im−1. Then,
we show that 1

α1
E1(
√
F ,
√
F ) ≤ γ1

α1 γm
Em(f , f ). Theorem 2 follows from an induction argu-

ment.

Remark: Looking carefully at the lower bound on the log-Sobolev constant obtained in
Theorem 2 with the above method, one can see that it strongly depends on the upper
bound on the relaxation time. More precisely, if one can obtain a sharper exponential up-
per bound on tmrel, then, using our method, they can obtain a lower bound on the second
parameter which has the same order.
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