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The t-admissibility problem has been widely studied specially because 
determining if a graph G is 3-admissible is still an open problem since it was 
proposed [2]. Although recognizing if a graph is 2-admissible is a 
polynomial time solvable problem, we realized  that for some classes could 
be easier. Hence, in this work we present simple and efficient algorithms in 
order to characterize 2 and 3-admissible graphs for some graphs classes as 
cographs, split graphs, P4-sparse and other superclasses.
     

Introduction

A tree t-spanner of a graph G is a spanning tree T of G in which the distance 
between adjacent vertices of G is at most t in T. In this case, we say that G is a 
t-admissible graph and the t-admissibility problem concerns in deciding if G is 
t-admissible. The minimum t for which G is t-admissible is the stretch index of G. 

In addition to the results presented above, we determined  linear time algorithms to 
check 2-admissibility for P4-tidy graphs, graphs that generalize P4-sparse graphs, as 
described above. 

We also considered the t-admissibility problem for a superclass of (0,2)-graphs, the 
(k,l)-graphs. Specifically: split graphs (i.e. (1,1)-graphs) and (0,l)-graphs. We 
presented linear time algorithms to verify the existence of a tree 2-spanner.

As future work, we intend to extend this study to other graph classes and to deal 
with a recent study that is a variation of t-admissibility, called edge admissibility [4], 
concerning in obtaining a spanning tree of the line graph of G in which the distance 
between adjacent edges of G is at most t.

We present a linear time algorithm to decide 2-admissibility for P4-sparse graphs. 
The algorithm consists in verifying the existence of a universal vertex and if the 
given graph is a thin spider. For this second part, we calculate its spider partition (S, 
K, R) and check the degrees of the vertices in order to differ the thin form the thick 
spider (Figure 2), which is not 2-admissible.

Considering (0,2)-graphs (graphs that can be partitioned into 0 independent set and 
2 cliques) we also present a linear time algorithm to check the 2-admissibility. 
Given a (0,2)-graph G, G is 2-admissible if and only if G has a universal vertex, a 
cut-vertex or between the parts of the (0,2)-partition is a strict 2-connected graph that 
has not an induced C4.
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Deciding whether G is 2-admissible can be solved in O(n+m) time, where n and 
m are the number of vertices and edges of G, respectively. t-admissibility is 
NP-complete for t ≥ 4, and 3-admissibility remains an open problem.

Our goal is to provide simple and fast characterizations of tree t-spanners for 
graph classes in order to check 2- or 3-admissibility for them. 

3-admissibility has been already efficiently solved for some graph classes, such as 
cographs, split graphs, cycle-power graphs and (2,1)-chordal graphs [1,3].

For P4-sparse graphs (graphs obtained from trivial graphs, by applying in any order 
union, join and spider operations), we have that, if G is not a thin spider (Figure 1) 
and has not a universal vertex, its stretch index is equal to 3. 

Moreover, given a P4-sparse graph G, G is 2-admissible if and only if either G has 
universal vertex; or G is a thin spider. 

Figure 1: Thin spider graph and its tree 2-spanner T. Two parallel lines represent a join operation between the 
touched parts. Each vertex in the spider's body is connected to all other vertices in the spider's body and the 
vertices on the spider's head R. Thus there is a spanning star with respect to the body and R. Since spider's paws 
have degree one, we make them pendant in T, and then, the stretch index is equal 2.

Figure 2: Thick spider graph and its tree 3-spanner. Two parallel lines represent a join operation between the touched 
parts. Dashed lines represent non-edges. Since each spider's paw is adjacent to all vertices of the body, except one, 
there is a spanning star with respect to the body and the head R with any vertex v of the spider's body as the center of 
the star. The paw that is not adjacent to v is placed in any of the leaves of the spider’s body. And, thus, the stretch 
index of the graph is 3.


