The Strict Terminal Connection Problem on Chordal Bipartite Graphs

Alexsander Andrade de Melo 1 Celina Miraglia Herrera de Figueiredo 1 Uéverton dos Santos Souza 2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 2Federal Fluminense University, Niterói, Brazil
{aamelo,celina}@cos.ufrj.br uiveaueton@ic.uff.br

Introduction

Let \(G \) be a graph and \(W \subseteq V(G) \) be a non-empty set, called terminal set. A strict connection tree of \(G \) for \(W \) is a tree subgraph of \(G \) whose leaf set is equal to \(W \). A non-terminal vertex of a strict connection tree \(T \) is called linker if its degree in \(T \) is exactly 2, and it is called router if its degree in \(T \) is at least 3. We remark that the vertex set of every connection tree can be partitioned into terminal vertices, linkers, and routers. For each connection tree \(T \), we let \(L(T) \) denote the linker set of \(T \) and \(R(T) \) denote the router set of \(T \). Figure 1 illustrates a graph \(G \), a terminal set \(W \), and a strict connection tree of \(G \) for \(W \).

Motivated by applications in information security, network routing and telecommunication, Dourado et al. [1] introduced the strict terminal connection problem, which is formally defined below.

Strict Terminal Connection (S-TCP)

Input: A graph \(G \), a non-empty terminal set \(W \subseteq V(G) \) and two non-negative integers \(\ell \) and \(r \).

Question: Does there exist a strict connection tree \(T \) of \(G \) for \(W \), such that \(|L(T)| \leq \ell \) and \(|R(T)| \leq r \)?

Table 1 summarises the complexity of S-TCP with respect to the parameters \(\ell, r, \Delta(G) \), and the classes of split graphs and cographs. In addition to these results, it is known that S-TCP is \(\text{NP} \)-complete even if \(\Delta(G) = 4 \) and \(\ell \geq 0 \) is fixed, or \(\Delta(G) = 3 \) and \(\ell \) is arbitrarily large [3]; on the other hand, if \(\Delta(G) = 3 \), the problem can be solved in time \(\text{pO}(|G|) \) [3].

S-TCP on Chordal Bipartite Graphs

A graph \(G \) is called chordal bipartite if every induced cycle of \(G \) has length 4. Equivalently, a graph \(G \) is chordal bipartite if \(G \) is bipartite and every cycle of \(G \) of length at least 6 has a chord, i.e. an edge between two non-consecutive vertices of the cycle.

To prove that S-TCP is \(\text{NP} \)-complete on chordal bipartite graphs, we present a polynomial-time reduction from VERTEX-COVER, which is formally defined below. The proposed reduction is based on the polynomial-time algorithm by Muller and Brandstadt [4] as to prove that Steiner tree is also \(\text{NP} \)-complete on chordal bipartite graphs.

CONCLUDING REMARKS

We conclude this work by posing some open questions.

- Is S-TCP parameterized by \(r \geq 2 \) in \(\text{XP} \)?
- Is S-TCP parameterized by \(r \geq 2 \) in FPT when restricted to chordal bipartite graphs? If not, is it in \(\text{XP} \)?
- Is S-TCP parameterized by \(\ell \) in FPT when restricted to graphs of maximum degree 3?
- In addition to cographs, on which graph classes is S-TCP in \(\text{P} \)?

REFERENCES

Figure 1: (a) Graph \(G \) and terminal set \(W \) (blue squared vertices). (b) Strict terminal connection tree \(T \) of \(G \) for \(W \), such that \(|L(T)| = 3 \) and \(|R(T)| = 3 \).

Figure 2: Gadget \(H_i \).

Figure 3: Gadgets \(H_1 \) and \(H_2 \), respectively.