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Unitary Cayley graphs

For a positive integer n, the unitary Cayley graph Xn =

Cay(Zn,Un) is defined by the additive group of the ring Zn of in-
tegers modulo n and the multiplicative group Un of its units, where
Un = {a ∈ Zn : gcd(a, n) = 1}. The vertex set of Xn is
the set V (Xn) = Zn = {0, 1, · · · , n − 1} and its edge set is
E(Xn) = {ab : a, b ∈ Zn and gcd(a − b, n) = 1}. The uni-
tary Cayley graphs Xn are regular of degree |Un| = φ(n), where
φ(n) is the Euler function.

Total coloring

A k-total coloring of G is an assignment of k colors to the edges
and vertices of G, such that no adjacent elements (vertices and
edges) receive the same color. The total chromatic number of G,
denoted by χT(G), is the least k for which G has a k-total color-
ing. Let ∆(G) be the maximum degree of G, clearly, χT(G) >
∆(G) + 1 and the Total Coloring Conjecture (TCC) [1, 6] states
that χT(G) 6 ∆(G) + 2. This conjecture has been verified for
some classes but the general statement has remained open for more
than fifty years and has not been settled even for regular graphs.
If χT(G) = ∆(G) + 1, then G is said to be Type 1, and if
χT(G) = ∆(G) + 2, then G is said to be Type 2. The problem
of deciding if a graph is Type 1 has been shown NP-complete [5].
For more information, we refer to [3], which is the first PhD thesis

on total coloring developed in Brazil.

Total coloring of unitary Cayley graphs

Prajnanaswaroopa et al. [4] established the TCC for all unitary
Cayley graphs. Some unitary Cayley graphs are already known to
be Type 1 or Type 2. If n = pr is a prime power, then Xpr is
a complete p-partite graph and the total chromatic number is well
known: if p is odd, thenXpr is Type 1, and if p is even, thenXpr is
Type 2 [3].
We determine the total chromatic number of all members of two

families of unitary Cayley graphsXn: when n = 6s, for a positive
integer s, and when n = 3p, for prime p ≥ 5.
Boggess et al. [2] proved that for n ≥ 3, graphXn can be decom-

posed into φ(n)
2

edge-disjoint Hamiltonian cycles, denoted by Hj
n,

with j ∈ Un; and this result is used to prove the following theo-
rems. Consider directed edges {〈i, i + j mod n〉 : 0 ≤ i ≤
n− 1} to indicate the direction used to construct the cyclesHj

n, as
Hj
n andHn−j

n are the same cycle.

Theorem 1. For positive integer s, the graphX6s is Type 1.

Proof. Graph X6s is bipartite with parts A = {2i : 0 ≤ i ≤
6s−2

2
} andB = {2i+ 1 : 0 ≤ i ≤ 6s−2

2
}. Consider the Hamilto-

nian cycleH1
6s, since it has 6s vertices, it is well known that admits

a 3-total coloring T such that vertices i, with i ≡ 0 mod 3 (resp.
i ≡ 1 mod 3 and i ≡ 2 mod 3) receive the same color. As
3 6∈ U6s, the adjacent vertices inX6s do not have the same color as-
signed by T . Now, remove fromX6s all the edges inH1

6s. Clearly,
the resulting bipartite graph is (∆(X6s)−2)-regular and, by Hall’s
theorem, it can be edge colored with ∆(X6s) − 2 colors. There-
fore,X6s is Type 1. The following figure presents a 5-total coloring
ofX12.

Theorem 2. For prime p ≥ 5, the graphX3p is Type 1.

Idea of the proof. Graph X3p is a 3-partite graph with parts A =

{3i : 0 ≤ i ≤ p − 1}, B = {3i + 1 : 0 ≤ i ≤ p − 1} and
C = {3i + 2 : 0 ≤ i ≤ p − 1}. By Vizing’s theorem, each
Hamiltonian cycle Hj

3p admits a 3-edge coloring. For j > 1, as-
sign 3 colors to the edges of everyHj

3p such that a special color c0 is
used in all cycles in a particular directed edge 〈a, a+j mod 3p〉,
and the endpoints {a, a + j mod 3p} receive 2 different colors
already used in the respective cycle. For j = 1 ∈ U3p, assign 3
colors to the edges ofH1

3p so that the special color c0 is assigned to

exactly 3 directed edges: 〈1, 2〉, 〈4, 5〉, 〈7, 8〉; and the endpoints
{1, 4, 7} ∈ B and {2, 5, 8} ∈ C receive the 2 colors already
used in the respective cycle, one color to each part. The remaining
vertices not colored inX3p are in partA, and we assign color c0 to
these vertices.
Notice that the assignment of colors does not have conflict. We

used 2 colors for the elements of each of the p − 1 Hamilto-
nian cycles and used color c0 in all cycles. Thus, we obtain a
2(p − 1) + 1 = ∆(X3p) + 1-total coloring. The figure below
presents the four edge-disjoint Hamiltonian cycles H1

3p,H
2
3p,H

4
3p

and H7
3p of X15 with a 9-total coloring such that the color c0 is

represented by purple color.
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This research contains as a main result the proof that every Chordal B1-EPG

graph is simultaneously in the VPT and EPT graph classes. In

addition, we describe a set of graphs that defines Helly-B1-EPG families. In

particular, this work presents some features of non-trivial families of graphs

properly contained in Helly-B1 EPG, namely Bipartite, Block, Cactus and Line of

Bipartite graphs.

Introduction

In this work we will mainly explore the EPG graphs, in particular B1-

EPG graphs. However, other classes of intersection graphs will be studied

such as EPT and VPT graph classes.
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Figure 1: Representation of a clique as edge-clique and as claw-clique.

Theorem 1: Let G be a B1-EPG graph. If G is {S3, S3', S3'', C4}-free then G is a Helly-

B1-EPG graph.

• A graph is a Bk-EPG graph if it admits an EPG representation in which each path

has at most k bends;

• When k = 1 we say that this is a single bend EPG representation or simply a B1-

EPG representation;

• In a B1-EPG representation, a clique K can be edge-clique or claw-clique [3].

Subclasses of Helly-B1-EPG Graphs

Objective

Definitions and Technical Results

Relationship among Chordal B1-EPG, VPT and EPT graphs
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Figure 2: Reconstruction of intersection model.

(a) Claw with paths. (b) Subgraph induced by paths.

Figure 3: Graphs on statement of Theorem 1: S3, S3', S3'', C4.

• Bull-free graphs are {S3, S3', S3''}-free, so these results implies in results of [1].

Theorem 2: If the graph G is B1-EPG and diamond-free then G is Helly-B1-EPG.

Corollary: Bipartite, Block, Cactus and Line of Bipartite graphs are Helly-B1-EPG.

Theorem 3: Chordal B1-EPG ⊊ VPT. Theorem 4: Chordal B1-EPG ⊊ EPT.

Figure 4: Graph S4 and one of its possible VPT and EPT representations.

• A collection of sets satisfies the Helly property when every pairwise intersecting

sub-collection has at least one common element;

• When this property is satisfied by the set of paths used in a representation, we get

a Helly representation;

• Helly-B1-EPG graphs were studied in [2];

• EPG, EPT and VPT representations arise in circuit layout problems and layout opt

imization [4];

• VPT and EPT graphs are the vertex-intersection and edge-intersection graphs of

paths on trees, respectively;

• VPT and EPT graphs are incomparable families of graphs.
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This work presents a hybrid exact-heuristic algorithmic

approach, based on an arc-time indexed mixed-integer

programming formulation and a generalized evolutionary based on

a strong local search, in order to better solve the problem

𝑃||σ𝛼𝑗𝐸_𝑗 + 𝛽𝑗 𝑇𝑗 (WET). The selected arcs from local optimal

solutions generated by a Genetic Algorithm based on a strong

Local Search (GLS), are given as input to an IP Arc-time indexed

formulation, which is solved to produce better solutions at CPLEX.

The proposed Hybrid Matheuristic method is capable to produce

better results when compared with the previous best results in the

literature.

Figure 1: (a) An instance example of 𝟖 jobs for the weighted tardiness and earliness-tardiness scheduling

problem. Scheduling examples for the (b) identical parallel machines using machine-oriented Gantt

chart and (c) the single sequence representation.

INTRODUCTION

OBJECTIVE

JUST-IN-TIME SCHEDULING PROBLEM

ACKNOWLEDGMENT

REFERENCES

THE HYBRID MATHEURISTIC

COMPUTATIONAL EXPERIMENTS



𝒋∈𝑱+



𝒋∈𝑱\ 𝒊



𝒕=𝒑𝒊

𝑻−𝒑𝒋

𝒇𝒋 𝒕 + 𝒑𝒋 𝒙𝒊𝒋
𝒕 (𝟏)



𝒋∈𝑱+



𝒕=𝒑𝒊

𝑻−𝒑𝒋

𝒙𝒊𝒋
𝒕 = 𝟏 ∀𝒋 ∈ 𝑱 (𝟐)



𝒋∈𝑱+\ 𝒊 ,
𝒕−𝒑𝒋≥𝟎

𝒙𝒋𝒊
𝒕 − 

𝒋∈𝑱+\{𝒊},
𝒕+𝒑𝒊+𝒑𝒋≤𝑻

𝒙𝒊𝒋
𝒕+𝒑𝒊 = 𝟎 (𝟑)

Minimize

s.t.


𝒋∈𝑱+,
𝒕−𝒑𝒋≥𝟎

𝒙𝒋𝟎
𝒕 − 

𝒋∈𝑱+,
𝒕+𝒑𝒋+𝟏≤𝑻

𝒙𝟎𝒋
𝒕+𝟏 = 𝟎 𝒕 = 𝟎,… , 𝑻 − 𝟏 (𝟒)

(∀𝒊 ∈ 𝑱; 𝒕 = 𝟎,… , 𝑻 − 𝒑𝒊)



𝒋∈𝑱+

𝒙𝟎𝒋
𝟎 = 𝒎 (𝟓)

𝒙𝒊𝒋
𝒕 ∈ 𝒁+ ∀𝒊 ∈ 𝑱+; ∀𝒋 ∈ 𝑱+{𝒊 ; 𝒕 = 𝒑𝒊, … , 𝑻 − 𝒑𝒋) (𝟔)

𝒙𝟎𝟎
𝒕 ∈ 𝒁+ (𝒕 = 𝟎,… , 𝑻 − 𝟏) (𝟕)

Instance group

Kramer and Subramanian [5] MathGLS-IP

Best run Average Best run Average

GAP 

(%)
BKS

GAP 

(%)
Time (s)

GAP 

(%)
# *

GAP 

(%)
Time (s)

wet40-2m 0,000 12 0,000 5,592 0,000 24 0 0,001 6,420

wet40-4m 0,000 12 0,001 6,258 0,000 24 0 0,001 9,261

wet40-10m 0,000 5 0,000 4,080 0,000 25 0 0,002 8,882

wet50-2m 0,000 11 0,001 12,617 0,000 23 0 0,000 13,623

wet50-4m 0,000 12 0,306 14,145 0,000 25 0 0,004 15,939

wet50-10m 0,000 5 0,014 9,320 0,000 24 0 0,038 13,686

wet100-2m 0,000 12 0,008 168,483 0,000 24 0 0,004 166,087

wet100-4m 0,790 6 0,858 190,309 0,000 23 4 0,055 114,163

wet100-10m 0,161 0 0,227 140,380 0,089 8 0 0,332 102,153

Total --- 75 --- --- --- 200 4 --- ---

Average 0,106 --- 0,157 61,243 0,010 --- --- 0,049 50,024

# – Amount of solutions equal to BKS
BKS – Amount of Best Known Solutions in the literature * – Amount of improved solutions

Considering the classical NP-hard parallel-machine weighted

earliness-tardiness scheduling problem, 𝑷||σ𝜶𝒋𝑬𝒋 + σ𝜷𝒋 𝑻𝒋
(WET), in 3-field notation [1], where 𝒋 = {𝟏,… , 𝒏} is the set of

independent jobs to be processed without preemption, in 𝒎
identical parallel machines, where each one can process at least

one job on a given time. Every job 𝑗 has a positive processing time

𝑝𝑗, a due date 𝑑𝑗 and a positive earliness (𝛼𝑗) and tardiness (𝛽𝑗)

weights. The earliness of a job is defined as 𝐸𝑗 = max{0; 𝑑𝑗 − 𝐶𝑗}

and the tardiness of a job is defined as 𝑇𝑗 = max{0; 𝐶𝑗 − 𝑑𝑗},

where 𝐶𝑗 is the completion time of the job [2]. Figure 1 (a) presents

an example of 8 jobs for the problem followed by a solution

representation for single machine scheduling in Figure 1 (b) and its

corresponding representation for identical parallel machines in

Figure 1 (c), considering three identical parallel machines.

The objective of this work is to develop an exact-heuristic method

to solve large instances of the the identical parallel machine

Weighted Just-in-Time Scheduling Problem.

𝛼𝑗𝐸_𝑗 + σ𝛽𝑗 𝑇𝑗

In Table 1 we present a resume of the computational experiments,

compared with the literature. MathGLS-IP solves large instances up to

500 jobs and 2, 4 and 10 identical parallel machines. Our method

also presents results for 200 instances, not yet known in the literature,

and improved 4. Detailed results can be observed at Amorim [4].

Every job must be visited by

exactly one path

Define the network flow of 

𝑚 units over an acyclic 

layered graph 𝐺 = (𝑉,𝐴)

Binary 

variables

Eliminated 

Constraints

Figure 2: GLS - Crossover operation followed by local search, where the best local optimal

solution of every generation is kept in a Hash Table.

Figure 3: (a) Parallel machine network flow representation for the solution in Figure 1 (c) and the stored arcs

from this solution in a hash table presented in (b) (we keep a set of stored solutions - not only one solution).

The Hybrid Matheuristic (MathGLS-IP) is based on two steps:

The best local optimal solution generated by the GLS

(Figure 2) is kept in a Hash Table on every generation,

which will be used as a selected set of arcs to the IP Arc-

time formulation. A solution representation of the Arc-time

is presented in Figure 3.

- STEP 1: Heuristic approach (GLS)

When GLS procedure finishes, the selected arcs kept in

the Hash Table are used to build the Arc-time, and then,

solve it in CPLEX to get better convergence or improve

the solution for a given instance of the problem. The Arc-

time indexed formulation, proposed by Pessoa et al. [3], is

presented bellow. The MathGLS-IP method eliminates the

Constraints (4), in order to decrease the number of binary

variables of idle time at the end of a scheduling.

- STEP 2: Exact approach (Solving the Arc-time)
Table 1: Computational Experiments compared with the Literature for the problem 𝑷||σ𝜶𝒋𝑬𝒋 + σ𝜷𝒋𝑻𝒋 with

40, 50 and 100 jobs on 2-10 machines.
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Layout de Redes de Sensores Sem Fio 
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Uma Abordagem Combinatória
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Há diversas aplicações para as Redes de Sensores sem Fio(RSSF): monitoramento de sinais 
ambientais[1], aplicações militares[2], entre outras. Neste  trabalho, investiga-se o problema 
de Planejamento de Redes de Sensores Sem Fio (PRSSF-MOD), onde a rede é formada por 
múltiplas origens (sensores) e múltiplos destinos (sorvedouros). A topologia da rede é 
representada através de um grafo e na resolução do problema proposto, iremos definir um 
modelo de Programação Linear Inteira (PLI) e uma grafo auxiliar que será utilizado junto ao 
modelo.

Introdução

O objetivo deste trabalho é minimizar o número de sensores da topologia da rede em uma 
dada região de interesse, de modo a atender as conexões entre múltiplas origens e destinos.

   Este trabalho apresentou uma versão modificada do PRSSF que considera múltiplas origens 
e destinos. O modelo foi avaliado em uma instância real e obteve uma redução na quantidade 
de sensores de 25% utilizados na topologia. 

Os experimentos computacionais se baseiam na instância real do intel lab data[4], que 
possui 54 sensores de monitoramento ambiental. Os grupos de possíveis posições e as origens 
e destinos de cada experimento estão apresentadas abaixo.

Dado um conjunto S de sensores, onde para cada s∈S é associado um conjunto {si}i=1..k, 
um raio de comunicação r, um custo de alocação c e um conjunto P de origens e destinos 
p={op,dp}. Utilizando essas informações pretende-se construir uma topologia T S⊆  que 
conecte todos os pares de origens destinos p={op,dp}, de forma direta ou por múltiplos saltos 
entre sensores intermediários, de modo a minimizar o custo de instalação da rede.

Experimentos computacionais

Objetivo

Definição do problema

Conclusões

Referências

Modelo PLI e grafo auxiliar
 Para resolver o problema foram definidos um modelo PLI[3] (Figura 1)  e um grafo 

auxiliar G=(V,E) (Figura 2), onde V é definido pelas possíveis posições de S e vértices 
artificiais A que representam origens e destinos e E compreende as arestas definidas pela 
intersecção entre os raios de comunicação dos sensores em diferentes grupos. Para finalizar a 
aplicação são adicionadas arestas entre os nós artificiais de origem e destino e seus 
respectivos grupos de sensores.

Figura 2: Grafo auxiliar
Figura 1: Modelo PRSSF-MOD

 
 Restrição (1) garante a existência de um caminho entre origens e destinos, Restrição (2) 

garante que apenas uma posição dentre as candidatas sera escolhida, (3) e (4) representam que 
uma aresta só pode ser usada se existe um sensor naquela posição e a Restrição (5) define que 
todo nó artificial está na solução.

Figura 3(d): Instância com 9 possíveis Sensores e 
2 Origens e Destinos

      

 Figura 3(b): Instância com 27 possíveis Sensores e 
10 Origens e Destinos

 

Figura 3(a): Instância com 27 possíveis Sensores e 
5 Origens e Destinos

Figura 3(c):  Instância com 18 possíveis Sensores e 
5 Origens e Destinos

Os experimentos foram executados em um Core i5 2.3 GHz, 16 GB de RAM, implementados 
em C++ usando CPLEX e compilados no gcc 9.3.0. Foram necessários, no maximo, 14 
segundos para a execução das instâncias, o que demonstra a viabilidade da solução proposta.
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The random walk on the Tower of Hanoi
The tower of Hanoi puzzle is a single-player game where at each turn the player moves

a disk to a tower that is different from the one it previously was. The game does not allow
a disk above smaller disks and its aim is to move all disks from a tower to another one
(see Figure 1).

Figure 1: Tower of Hanoi with 4 disks.

The Hanoi graph Hm = (Vm, Em) is the graph whose vertices represent the possible
configurations of the tower of Hanoi puzzle with 3 towers and m disks. Its edges represent
the moves between these configurations. Thus, H1 is isomorphic to a triangle and for
each m ≥ 2 we can construct Hm in the following way which is illustrated in Figure 2: we
consider three isomorphic copies of Hm−1 and we label them as Him−1 = (V im−1, E

i
m−1),

i ∈ {1, 2, 3}. For each i ∈ {1, 2, 3} let vitop, v
i
lb and virb be the vertices on the top, on the

left, and on the right of the basis of the biggest triangle in Him−1. The graph Hm is the
graph with vertex set Vm = ∪3

i=1V
i
m−1 and edge set Em =

(
∪3
i=1E

i
m−1

)
∪E?m, where E?m is

defined as E?m := {{v1
lb, v

2
top}, {v1

rb, v
3
top}, {v2

rb, v
3
lb}}.

Figure 2: Graphs Hm for m ∈ {1, 2, 3} with edges of E?m coloured in red.

The simple random walk on Hm is the process {Xt; t ≥ 0} described as follows: an
exponential clock with rate one is attached to each edge of Em. Whenever a clock rings,
the edge associated with that clock is flipped, making the random walker jump if she was
at one of the incident vertices to that edge. Its infinitesimal generator is the discrete Lapla-
cian operator ∆m given by

∆mf (x) =
∑

y∼x
(f (y)− f (x)),

which says that if the random walker stands at a vertex x then it can jump to any of its
adjacent vertices with rate 1. In the above formula, x ∼ y denotes that x and y share a
common edge.

An interesting question to make is to ask how long the random walker takes to get
completely lost. In order to answer this question, let µx0t (x) denote the probability that
Xt = x given that X0 = x0, and let Um denote the uniform measure on Vm. The distance
to equilibrium of the simple random walk on Hm is defined as

dm (t) = max
x0∈Vm

‖µx0t − Um‖TV = max
x0∈Vm





1

2

∑

x∈Vm

∣∣∣∣µ
x0
t (x)− 1

3m

∣∣∣∣



 .

Not only the above function is decreasing, but it also takes values in the interval [0, 1].
Thus, given a threshold ε ∈ (0, 1), it makes sense to define the ε-mixing time of the simple

random walk as

tmmix(ε) = inf {t ≥ 0; dm (t) < ε},

formalizing the answer to the aforementioned question.

Algebraic connectivity and Poincaré inequalities
The spectral gap γm of the simple random walk on Hm (also known as the algebraic

connectivity of the graph Hm) is defined as the symmetric of the second largest eigen-
value γm of the operator ∆m. It also presents a variational formula [2]. Indeed, let Em be
the Dirichlet form of the simple random walk on Hm which is given by

Em(f, f ) =
1

2

∑

x∈Vm

∑

y∼x
|f (x)− f (y)|2Um(x).

Let Var(f ; Um) be the variance of a function f : Vm → R for the simple random walk on
Hm, which is given by

Var(f ; Um) =
1

2

∑

x,y

|f (x)− f (y)|2Um(y)Um(x).

The spectral gap γm of the simple random walk on Hm can be defined as

γm := inf
f

{ Em(f, f )

Var(f ; Um)
; Var(f ; Um) 6= 0

}
.

Namely, the relaxation time tmrel := 1/γm of the simple random walk on Hm is the smallest
constant that satisfies the Poincaré inequality

Var(f ; Um) ≤ C Em(f, f ) for every function f.

The spectral gap is strongly related to mixing because

dm (t) ≤ 3m/2 e−γm t (see [5], for instance).

Our result in this direction is the following:

Theorem 1: For every m ≥ 2 we have

tmrel ≤
1

3 (1/3 ; 1/3)m−1
, where (a ; q)n :=

n−1∏

k=0

(1− a qk)

is the q-Pochhammer symbol, also known as q-shifted factorial. Consequently,

tmmix(ε) ≤ log 3

9

(
3

2

)m
m + Oε

((
3

2

)m)
.

Logarithmic-Sobolev inequalities
The log-Sobolev constant αm of the simple random walk on Hm presents a similar vari-

ational definition. Here the variance is replaced by the entropy-like quantity Lm given
by

Lm(f ) =
∑

x∈Hm

|f (x)|2 log

(
|f (x)|2∑

z∈Hm
|f (z)|2Um(z)

)
Um(x).

Namely

αm := inf
f

{Em(f, f )

Lm(f )
; Lm(f ) 6= 0

}
,

that is, 1/αm is the smallest constant that satisfies the logarithmic Sobolev inequality

Lm(f ) ≤ C Em(f, f ) for every function f.

The log-Sobolev constant is stronger than the spectral gap in the sense that

dm (t) ≤ √me−αm t/2 (see [3], for instance).

We prove the following result:

Theorem 2: There exists a constant α1 ∈ (0.856, 1.500] such that for every m ≥ 1 we have
1

αm
≤ 2

α1

(
3

2

)m
. Consequently, tmmix (ε) ≤ 2

α1

(
3

2

)m
logm +Oε

((
3

2

)m)
.

Decomposing the graph
The main idea is to remove the edges of E?m and to decompose Hm into Him−1,

i ∈ {1, 2, 3}, and then to do some analysis. Given a function f : Vm → R and i ∈ {1, 2, 3},
denote the restriction of f to the domain V im−1 by f |V i

m−1
, and define U im−1 := Um|V i

m−1
.

Firstly, we prove that

Var(f ; Um) =
1

3

3∑

i=1

Var(f |V i
m−1

; U im−1) + Var(G ; U1) ≤ 1

γm−1
Em(f , f ) + Var(G ; U1).

where G(i) =
∑
z∈Hi

m−1
f (z)U im−1(z) is the expectation of the function f , restricted

to V im−1, with respect to the measure U im−1. Secondly, we show that Var(G ; U1) ≤
31−mVar(f ; Um). By the definition of γm, we obtain

1

γm
≤ 1

γm−1 (1− 31−m)
,

which after an induction argument, implies Theorem 1. Similarly, we prove that

Lm(f ) ≤ 1

αm−1
Em(f, f ) +

1

α1
E1(
√
F ,
√
F ),

where F (i) is the square of the `2 (U im−1) norm of the function f restricted to V im−1. Then,
we show that 1

α1
E1(
√
F ,
√
F ) ≤ γ1

α1 γm
Em(f , f ). Theorem 2 follows from an induction argu-

ment.

Remark: Looking carefully at the lower bound on the log-Sobolev constant obtained in
Theorem 2 with the above method, one can see that it strongly depends on the upper
bound on the relaxation time. More precisely, if one can obtain a sharper exponential up-
per bound on tmrel, then, using our method, they can obtain a lower bound on the second
parameter which has the same order.
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Introdution
A k-total coloring of a graph G is an assignment of k colors to the elements of G such that adjacent elements have
different colors. The total chromatic number χ′′(G) is the smallest integer k for which G has a k-total coloring. Clearly,
χ′′(G) ≥ ∆+1, and the Total Coloring Conjecture (TCC) states that for any simple graph G, χ′′(G) ≤ ∆+2, where ∆ is the
maximum degree of G [2, 8]. Graphs with χ′′(G) = ∆(G)+1 are called Type 1, and graphs with χ′′(G) = ∆(G)+2 are called
Type 2. A circulant graph Cn(d1, d2, · · · , dl) with 1 ≤ d1 < · · · < dl ≤ bn

2c has vertex set V = {v0, v1, · · · , vn−1} and edge
set E = ⋃l

i=1 Ei where Ei = {ei
0, ei

1, · · · , ei
n−1} and ei

j = (vj, vj+di
) where the indexes of the vertices are considered modulo

n. An edge of Ei is called edge of length di. In this work, we determine the Type of an infinite family of 4−regular circulant
graphs, that is, Cn(a, b). When a divide n (or b divide n), we will have a Prism graph G(n

a, 1) as subgraph of Cn(a, b). A
Prism graph G(n, 1) is defined by V (G(n, 1) = {ui, vi | 0 ≤ i < n} and E(G(n, 1)) = {uiui+1, vivi+1, uivi | 0 ≤ i < n}.
See some examples of Cn(a, b) with G(n

a, 1) as a subgraph in Figure 1.

(a) χ′′(C8(2, 3)) = 5 (b) χ′′(C10(2, 3)) = 5 (c) χ′′(C12(3, 4)) = 5 (d) χ′′(C16(3, 4)) = 5

Figura 1:Examples of Cn(a, b) with G(n
a, 1) as a subgraph.

General results
In the table below, we present some results already known about the total coloring of circulant graphs.

Circulant graph Type 1 Type 2
Cn(1) [9] n ≡ 0 mod 3 otherwise

Cn(1, 2, .., bn
2c) [9] n is odd otherwise

C2n(d, n) [5] l = gdc(d, n) with d = lm, m is even and C2n(d, n) 6' l copies of C10(2, 5) otherwise
Cn(1, 2) [3] n 6= 7 otherwise
C5p(1, k) [6] k ≡ 2 mod 5 or k ≡ 3 mod 5
C6p(1, k) [6] k ≡ 1 mod 3 or k ≡ 2 mod 3
Cn(1, 3) [9] tn = 8

Tabela 1:State of the art

Our results
It is known that the Prism graphs G(n, 1) are Type 1, except G(5, 1) [7, 4]. The 4−total coloring for this family will be
useful in the proof of the following theorem about 4−regular circulant graphs in which G(n, 1) is a subgraph.
Theorem 1. Let Cn(2k, 3) be a 4−regular circulant graph. The graph Cn(2k, 3) is Type 1 for n = (8µ + 6λ)k, with
k ≥ 1 and non-negative integers µ and λ.

(a) B(8, 2) colored (b) B(6, 2) colored (c) B(6, 2) with other coloring

Figura 2:Semigraph B(n, a)

A semigraph is a triple B = (V, E, S), where V is the set of vertices of B,E is a set of edges having two distinct endpoints
in V , and S is a set of semiedges having one endpoint in V . In this work we consider 4−regular semigraphs. Notice that a
k−total coloring of a semigraph B is an assignment of k colors to the edges, semiedges and vertices of B such that adjacent
elements have different colors.
Sketch of the proof. The result was proved in [1] when Cn(2k, 3) is connected, using the Figure 2(a) . Hence, suppose
that C(8µ+6λ)k(2k, 3) is disconnected, that is k = 3α. In this case, note that C(8µ+6λ)3α(3, 6α) is isomorphic to three copies
of C(8µ+6λ)α(1, 2α). To construct the colorings of these graphs, we consider two cases: µ = 0 and µ 6= 0. When µ = 0,
we construct the desired coloring by making the junction of λ copies of the semigraph B(6, 2) (Figure 2(c)) vertically and
horizontally, recursively. When µ 6= 0, we make the junction of µ copies of the semigraph B(8, 2) with λ copies of B(6, 2)
(Figure 2 (b)) vertically and horizontally, recursively (the same for the case when Cn(2k, 3) is connected). However the
process of joining its semiedges to construct the desired graph is different. See an example in Figure 3.

(a) C36(3, 12) (b) B(12, 4) (c) χ′′(C12(1, 4)) = 5

Figura 3:The graph C36(3, 12) with a total coloring with 5 colors.

Conclusion
The total chromatic number of several circulant graphs has been determined, including the total chromatic number of the
cubic circulant graphs C2n(d, n). As a future work, we would like to determine the total chromatic number of all 4−regular
circulant graphs Cn(a, b).
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Let G be a simple graph. A k-total-coloring of G is an assignment of k
colors to the edges and vertices of G, so that adjacent or incident
elements have different colors. The total chromatic number of G,
denoted by   aa      is  is the least k for which G has a k-total-coloring.
Evidently,                            , where            is  the   maximum   degree  of 
 G.   The  Total  Coloring  Conjecture  [1]  afirms  that                              .
This conjecture has been proved for cubic graphs [2], so the total
chromatic number of a cubic graph is 4 or 5. Graphs with                   1
+1  are said to be Type 1 and graphs withaa               2      are said to be
Type 2. Deciding whether a graph is Type 1 has been shown NP-
complete [2].
A k-total-coloring is equitable if the cardinalities of any two color
classes differ by at most one. The least k for which G has an equitable
k-total-coloring is the equitable total chromatic number of G and its
denoted by          .
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The sketch of the proof is by construction and two different
equitable 4-total-colorings were necessary to obtain the result.
We represent 1 for blue, 2 for green, 3 for red and 4 for yellow.
First coloring is showed in Figure 3(a). It's composed by two
copies of B colored with    colors. More specifically, in this figure,
ϕ(1) = ϕ(2) = ϕ(3) = ϕ(4) = 15  (semiedges counts 0.5).
When n≡0 (mod 2) we repeat this coloring  n times. Evidently,
ϕ(1) = ϕ(2) = ϕ(3) = ϕ(4) =n · 15. Figure 3(b) shows 6-Blowup
colored following this rule.
The second coloring is showed in Figure 3(c) and its composed by
3 copies of B colored with    colors.
In this coloring, ϕ(1) = ϕ(4) = 22 and ϕ(2) = ϕ(3) = 23.
When n≡1 (mod 2) we use this coloring once and for the
remaining n-3 copies of B we repeat  n-3 times the coloring
showed in 3(a). 

Thus, ϕ(1) = ϕ(1) = 22 + n-3· 15 and ϕ(2) = ϕ(3) = 23 + n-3 · 15.
Evidently, ϕ(1), ϕ(2), ϕ(3) and ϕ(4) differ at most one. Figure 3(d)
shows 5-Blowup colored following this rule.
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Figure 1: Lewis Carrol book cover

(d)  5-Blowup       with    

Figure 3: Construction of 5-Blowup and 6-Blowup with        

EQUITABLE TOTAL COLORING OF
BLOWUP SNARKS

(b) 6-Blowup       with         

Let B be the cubic semigraph with
6 semi-edges, illustrated in Figure
2. Blowup graphs are constructed
by connecting copies of B as in the
examples of Figures
An n-Blowup is a graph build with
n copies of B.  
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The search for connected, bridgeless, 3-regular
graphs with chromatic index equals  4, was
motivated by the Four Color Problem. Due the
difficult to find them, they were named  Snarks
after Lewis Carrol poem "The hunting of the
Snark", by M. Gardner [4]. Snarks were fictional
animal  species described by Carrol as
unimaginable creatures.
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Introduction

Let G be a graph and W ⊆ V (G) be a non-empty set, called terminal
set. A strict connection tree of G for W is a tree subgraph of G whose
leaf set is equal to W . A non-terminal vertex of a strict connection
tree T is called linker if its degree in T is exactly 2, and it is called
router if its degree in T is at least 3. We remark that the vertex set of
every connection tree can be partitioned into terminal vertices, linkers
and routers. For each connection tree T , we let L(T ) denote the linker
set of T and R(T ) denote the router set of T . Figure 1 illustrates a graph
G, a terminal set W and a strict connection tree of G for W .

(a) (b)
Figure 1: (a) Graph G and terminal set W (blue squared vertices). (b) Strict terminal
connection tree T of G for W , such that |L(T )| = 3 and |R(T )| = 3.

Motivated by applications in information security, network routing and
telecommunication, Dourado et al. [1] introduced the Strict Termi-
nal connection problem, which is formally defined below.

Input: A graph G, a non-empty terminal set W ⊆ V (G) and
two non-negative integers ` and r.

Question: Does there exist a strict connection tree T of G for W ,
such that |L(T )| ≤ ` and |R(T )| ≤ r?

Strict Terminal Connection (S-TCP)

Table 1 summarises the complexity of S-TCP with respect to the param-
eters `, r, ∆(G), and the classes of split graphs and cographs. In addition
to these results, it is known that S-TCP is NP-complete even if ∆(G) = 4
and ` ≥ 0 is fixed, or ∆(G) = 3 and ` is arbitrarily large [3]; on the other
hand, if ∆(G) = 3, the problem can be solved in time nO(`) [3].

Parameters
Graph class – ` r `, r `, r, ∆(G)

General NPC [1] NPC [1] P for r ∈ {0, 1} [2]
but W[2]h [3]

XP [1]
but W[2]h [3]

FPT [1, 3] but
No-poly kernel [3]

Split NPC [3] NPC [3] XP [3]
but W[2]h [3]

XP [1, 3]
but W[2]h [3]

FPT [1, 3]

Cographs P [3] P [3] P [3] P [3] P [3]
Table 1: Computational complexity of S-TCP. (Adapted from [3].)

Contribution
In this work, we prove that S-TCP remains NP-complete when re-
stricted to chordal bipartite graphs, even if ` ≥ 0 is fixed.

S-TCP on Chordal Bipartite Graphs

A graph G is called chordal bipartite if every induced cycle of G has
length 4. Equivalently, a graph G is chordal bipartite if G is bipartite
and every cycle of G of length at least 6 has a chord, i.e. an edge between
two non-consecutive vertices of the cycle.
To prove that S-TCP is NP-complete on chordal bipartite graphs, we
present a polynomial-time reduction from Vertex-cover, which is for-
mally defined below. The proposed reduction is based on the polynomial-
time reduction given by Müller and Brandstädt [4] so as to prove that
Steiner tree is also NP-complete on chordal bipartite graphs.

Input: A graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) such that |S| ≤ k

and every edge of G has an endpoint in S?

Vertex cover

Construction. Let I = (G, k) be an instance of Vertex cover
and c ≥ 0 be a constant. Assume that V (G) = {v1, . . . , vn} for some
positive integer n ≥ 2. Moreover, assume that G has at least one edge,
i.e. m = |E(G)| ≥ 1. We let f (I, c) = (H, W, ` = c, r) be the instance
of S-TCP defined as follows.
•For each vi ∈ V (G), create the gadget Hi as illustrated in Figure 2.

Figure 2: Gadget Hi.

• Subdivide the edge w1
a1a1 of H1 into ` new vertices u1, u2, . . . , u`,

creating the induced path 〈w1
a1, u1, . . . , u`, a1〉.

•For each pair vi, vj ∈ V (G), with i 6= j, add the edges xiyj and ziyj,
making the subgraph of H induced by X ∪Y ∪Z a complete bipartite
graph with bipartition (X ∪ Z, Y ), where X = {xi | vi ∈ V (G)},
Y = {yi | vi ∈ V (G)} and Z = {zi | vi ∈ V (G)}.

•For each vivj ∈ E(G), create the gadgets Hij and Hji as illustrated in
Figure 3.

Figure 3: Gadgets Hij and Hji, respectively.

•Finally, define W = W1 ∪W2 ∪W3 and r = k + 4n + 4m, where
W1 = {w1

i , w2
i | vi ∈ V (G)},

W2 = {w1
ai
, w2

ai
, w1

bi
, w2

bi
, w1

ci
, w2

ci
| vi ∈ V (G)}, and

W3 = {w1
pij

, w2
pij

, w1
qij

, w2
qij
| vivj ∈ E(G)}.

Theorem. Let I = (G, k) be an instance of Vertex-cover, such
that G has at least one edge, and let c ≥ 0 be a constant. The graph H
of f (I, c) is chordal bipartite. Moreover, I is a yes-instance of
Vertex-cover if and only if f (I, c) is a yes-instance of S-TCP.

Concluding remarks

We conclude this work by posing some open questions.
• Is S-TCP parameterized by r ≥ 2 in XP?
• Is S-TCP parameterized by r ≥ 2 in FPT when restricted to chordal
bipartite graphs? If not, is it in XP?
• Is S-TCP parameterized by ` in FPT when restricted to graphs of
maximum degree 3?
• In addition to cographs, on which graph classes is S-TCP in P?
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INTRODUCTION
Tuza [1] contributed to the area of graph labeling presenting many results in his seminal paper

and proposing new labeling games. We investigate the Range-Relaxed Graceful game (RRG

game) and present a lower bound for the number of available labels for which Alice has a

winning strategy in the RRG game on a simple graph G, on a cycle and on a path graph.

OBJECTIVE
To investigate the Range-Relaxed Graceful game, present a lower bound on the number of

consecutive nonnegative integer labels necessary for Alice to win the RRG game on a simple

graph G and contribute to the study of the question posed by Tuza [1]:

RANGE RELAXED GRACEFUL LABELING
Given a graph G and the set of consecutive integer labels L = 0,… , 𝑘 , 𝑘 ≥ 𝐸 𝐺 , a

labeling f: V(G) → L is said to be a Range-Relaxed Graceful Labeling if: (i) f is injective; (ii)

each edge 𝑢𝑣 𝜖 𝐸 𝐺 is assigned the (induced) label 𝑔 𝑢𝑣 = 𝑓 𝑢 − 𝑓(𝑣) , then all induced

edge labels are distinct.

RRG GAME
Two players, called Alice and Bob, alternately assign a previously unused label 𝑓 𝑣 𝜖 𝐿 = {0,

..., k}, k ≥ 𝐸(𝐺) to an unlabeled vertex v of a given graph G. If both ends of uv 𝜖 𝐸 𝐺 are

already labeled, then the label of the edge is defined as 𝑓 𝑢 − 𝑓(𝑣) . A move is said legal

if, after it, all edge labels are distinct. Alice’s goal is to end up with a vertex labeling of the

whole G where all of its edges have distinct labels and Bob’s goal is to prevent it from

happening.

RESULTS

THEOREM 1

Let G be a simple graph on n vertices and maximum degree ∆. Alice wins the RRG

game on G for any set of integer labels L = {0,… , 𝑘}, with

k ≥ 2∆2 + 1 𝑛 − 1 + 2∆ + 1
𝑛 − 1
2

. 

THEOREM 2

Given any integer n ≥ 4, Alice wins the RRG game on the path 𝑃𝑛 and on the cycle

𝐶𝑛 for any set of integer labels L = 0,… , 𝑘 , with 𝑘 ≥ 9𝑛 − 17.

SKETCH OF THE PROOF

For each vertex v є V(G), we define a set of available labels 𝐿𝑣 . When the game
starts, 𝐿𝑣= L, for every v є V(G). At each iteration, a player assigns a label to an

unlabeled vertex u from its set 𝐿𝑢 and, then, the set of available labels of each

remaining vertex is updated. Only vertex labels that can not generate repeated edge

labels in future iterations can last at each set. We consider four cases that can give

rise to repeated edge labels and, for each one, we count how many labels are deleted,

throughout the game, from each set of available labels. From our analysis, we

conclude that at most 2∆2 + 1 𝑛 − 1 + 2∆ + 1
𝑛 − 1
2

labels are deleted from

each set of available labels. Since |L| is greater than this value, there is always an

available label at each set that can be assigned to a vertex.

EXAMPLE

Consider 𝐶5 and the set L = {0, 1, 2, 3, ..., 66}. Suppose that Alice starts the game

by assigning label 7 to a vertex 𝑣1. Below, we present the first three iterations, where

the players play at 𝑣1, 𝑣2, 𝑣3 consecutively, and we show the last iteration.

REFERENCES
[1] Z. Tuza, Graph labeling games, Eletronic Notes in Discrete Mathematics 60

(2017), 61-68.

TUZA’S QUESTION

Given    a    simple   graph  G   and   a   set  of    consecutive   nonnegative  integer  labels f(v)                       
є L = 0,… , 𝑘 , for which values of k can Alice win the range-relaxed graceful game?

RRG Labeling of 𝐾5

𝐿𝑣2 = [0, 66] \ {7}

𝐿𝑣3 = [0, 66] \ { 3, 5,7}

𝐿𝑣4 = [0,66] \

{5,7,13,15,17,25}

𝐿𝑣5 = [0, 66] \ {1, 5,7, 9, 11,13, 15,

17,19,21,23,27,31}

A similar proof is obtained for the following result. 
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The sandpile group of outerplanar graphs
Carlos A. Alfaro – Banco de México – alfaromontufar@gmail.com,  Rahile R. Villagrán – CINVESTAV –

rvillagran@math.cinvestav.mx

We compute the sandpile groups of outerplanar planar graphs. The method can
be used to determine the algebraic structure of the sandpile groups of other planar
graph families.

Introduction

The sandpile group was originated in statistical physics. It was the first model
of a dynamical system exhibiting self-organized criticality.
The dynamics of the sandpiles are developed over a graph 𝐺 in the following way.
Consider a graph 𝐺 with a special vertex 𝑞, called sink. A configuration 𝑐 is a
vector whose entries are associated with the number of grains of sand at each vertex
of 𝐺. The sink vertex collects the sand quitting the system. A vertex is stable if the
number of sand grains on it is lower than its degree, that is, the number of edges
incident to the vertex. Otherwise, the vertex is unstable. A configuration is stable if
all the non-sink vertices of 𝐺 are stable. A toppling of an unstable configuration
consists of selecting an unstable vertex 𝑣 and moving deg(𝑣) grains from 𝑣 to its
neighbors, such that each neighbor 𝑢 receives 𝑚(𝑢, 𝑣) grains, where 𝑚(𝑢, 𝑣)
denotes the number of edges between 𝑢 and 𝑣. In Figure 1, we show a sequence of
topplings.

We call a graph outerplanar if it has a planar embedding with the outer face
containing all the vertices. The weak dual graph 𝐺∗ is constructed the same way as
the dual graph but without placing the vertex associated with the outer face. A graph
𝐺 is biconnected outerplanar if and only if its weak dual is a tree. Note that 𝐶 𝐺 +
𝐴(𝐺∗) = 𝑑𝑖𝑎𝑔(𝑐(𝐹"), … , 𝑐(𝐹#)), where 𝐴(𝐺) is the adjacency matrix of 𝐺.
A 2-matching 𝑀 is a set of edges of a graph 𝐺 such that each vertex of 𝐺 is incident
with at most 2 edges of 𝑀. Let denote by 𝐺°, the graph 𝐺 where each vertex has a
loop added. Given a 2-matching 𝑀 of 𝐺°, let Ω(𝑀) denote the set of loops in 𝑀. A 2-
matching 𝑀 of 𝐺° is minimal if there is no 2-matching 𝑀′ of 𝐺° such that Ω(𝑀′) is
not contained in Ω(𝑀) and |𝑀′| = |𝑀|. The set of minimal 2-matchings of a tree
with loops 𝑇° with 𝑘 edges will be denoted by 2𝑀$(𝑇°). Let 𝑑(𝑀) denote the
determinant of the submatrix of C(𝐺) = 𝑑𝑖𝑎𝑔(𝑐(𝐹"), … , 𝑐(𝐹#)) − 𝐴(𝑇) created by
taking the rows and columns associated with the loops of𝑀 of 𝑇°.

Theorem [2]. Let 𝐺 be a planar biconnected graph whose weak dual is the tree 𝑇
with 𝑛 vertices. Let ∆$= 𝑔𝑐𝑑({𝑑(𝑀):𝑀 ∈ 2𝑀$(𝑇°)}) . Then the spanning-tree
number 𝜏(𝐺) coincides with ∆% and 𝐾(𝐺) ≈ ℤ∆! ⊕ℤ∆#

∆!
⊕···⊕ ℤ ∆$

∆$%!
.

Let 𝐺𝐿% ℤ denote the group of 𝑛×𝑛 invertible matrices with entries in the
integers whose inverses also have entries in the integers. Two matrices 𝑀 and 𝑁 are
equivalent if there exist two matrices 𝑃, 𝑄 ∈ 𝐺𝐿%(ℤ) such that 𝑀 = 𝑄𝑁𝑃. The Smith
normal form of the matrix 𝑀 is the unique diagonal matrix 𝑑𝑖𝑎𝑔(𝑑", … , 𝑑' , 0, … , 0)
equivalent to 𝑀 such that 𝑟 is the rank of 𝑀 and 𝑑(|𝑑) for 𝑖 < 𝑗. The integers
𝑑", … , 𝑑' are called invariant factors.
Let 𝐺 be a planar graph with 𝑠 interior faces 𝐹", … , 𝐹#, let 𝑐(𝐹() denote the number of
edges in the cycle bounding 𝐹(. We define the cycle-intersection matrix, 𝐶(𝐺) =
(𝑐()) to be a symmetric 𝑠×𝑠 matrix, where 𝑐(( = 𝑐(𝐹(), and 𝑐() is the negative of the
number of common edges in the cycles bounding 𝐹( and 𝐹), when 𝑖 ≠ 𝑗.

Lemma [2]. Let 𝑑", … , 𝑑' be the invariant factors of 𝐶 𝐺 , where 𝐺 is a planar
graph. Then 𝐾(𝐺) ≈ ℤ*!⨁ ··· ⨁ℤ*&.

Over connected graphs with a sink, we will always obtain a stable and unique
configuration after a finite sequence of topplings. The stable configuration obtained
from the configuration 𝑐 will be denoted by 𝑠(𝑐). The sum of two configurations 𝑐
and 𝑑 is performed entry-by-entry. Let 𝑐⨁𝑑:= 𝑠(𝑐 + 𝑑). A configuration 𝑐 is
recurrent if there exists a non-zero configuration 𝑑 such that 𝑐 = 𝑐⨁𝑑. Recurrent
configurations play a central role in the dynamics of the Abelian sandpile model
since recurrent configurations together with the ⨁ operation form an Abelian group
known as sandpile group and denoted 𝐾(𝐺). An introduction to the topic can be
found in [1].
For example, the recurrent configurations for the cycle with 5 vertices and sink
vertex 𝑞 are (0,1,1,1, 𝑞), (1,0,1,1, 𝑞), (1,1,0,1, 𝑞), (1,1,1,0, 𝑞) and (1,1,1,1, 𝑞).
Could the reader verify that these configurations form an Abelian group with the ⨁
operation? Which configuration is the identity?

Figure 1: The sequence of topplings starts in (a) with the configuration (𝟏, 𝟐, 𝟏, 𝟎, 𝒒) over the
cycle with 5 vertices. At each step, the toppled vertex is highlighted in red.

Smith normal form and graphs

Sandpile groups

Sandpile groups of outerplanar graphs
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Abstract
Fullerene graphs are based on a famous carbon
allotrope and have become a popular class of
graphs (see references in [2]). They are char-
acterized as 3-regular and 3-connected planar
graphs, with only pentagonal or hexagonal faces.
The fullerene graph with icosahedral symmetry
is a particular class of fullerene graphs with pre-
cisely 12 pentagonal faces. Moreover, the mid-
points of its pentagonal faces form the planning
of an icosahedron. They can be described by
a vector (i, j), where j ≥ i ≥ 0 and j > 0,
determining the graph Gi,j. In 2013, Andova
and Skrekovski presented and proved formulas
to compute the diameter of the graphs G0,j and
Gj,j. Moreover, they presented a conjecture
stating a lower bound for the diameter of all
fullerene graphs. Therefore, in this study, we
investigate properties of fullerene graphs with
icosahedral symmetry. We show that, for i, j ∈
N∗, j ≥ i, every graph Gi,j contains a reduced
G0,j−i and that every graph Gi,j is contained in
an augmented Gj,j.

Introduction

An (undirected) graph G is a geometric object com-
posed of a set of vertices and edges. Figure 1 shows
a simple graph, i.e., a graph that does not have
more than one edge between the same pair of ver-
tices, and has no edges intersecting a vertex to it-
self. Before investigating the fullerene graphs, we
require some graph theory definitions and concepts.
A graph G is k-regular if all of its vertices have de-
gree k. A graph G is k-connected if it remains con-
nected whenever fewer than k edges are removed.

Figure 1: A simple Graph G.

A graph G is planar if it has an immersion in the
plane so that its edges intersect only at their end-
points. The diameter of a graph is the maximum
distance between any pair of vertices of G.
As an example, Figure 2 displays the Fullerene
graph C60: it is planar (no two edges intersect each
other); it is 3-regular (all vertices have degree 3);
and it is 3-connected (it remains connected if we
remove one or two edges). Fullerene graphs are 3-
regular and 3-connected planar graphs with only
pentagonal and hexagonal faces. Figure 2 shows
the Fullerene graph C60.

Figure 2: Fullerene graph C60.

Icosahedral Symmetry

Fullerene graphs with icosahedral symmetry have
exactly 12 pentagonal faces. All other faces are
hexagons. Moreover, their pentagonal faces shape
the planning of an icosahedron. They are described
by Gi,j, i, j ∈ N∗, j ≥ i, where i and j deter-
mine the distance between the vertices, with i as
the number of hexagons in direction −→x and j as
the number of hexagons in direction −→y (see Fig-
ure 3). Figure 3 displays the planning of the graph
Fullerene graph with icosahedral symmetry G1,4.

Figure 3: Planning of the graph G1,4.

Results

Theorem 1
Every fullerene graph with icosahedral symme-
try Gi,j, i, j ∈ N∗, j ≥ i, contains a reduced
graph G0,j−i.

Theorem 2
Every fullerene graph with icosahedral symme-
try Gi,j, i, j ∈ N∗, j ≥ i, is contained in an
augmented graph Gj,j.

The proofs of both theorems are based on vecto-
rial operations of the vector −→x and −→y and the
hexagonal lattice’s symmetry characteristics. Fig-
ure 4 displays the results of Theorems 1 and 2 for
the graph G1,4. The black triangle corresponds to
a section of G1,4. As a visual proof of Theorem 1,
note that the blue triangle corresponds to the graph
G0,3, entirely included in G1,4. Similarly for The-
orem 2, the red triangle corresponds to the G4,4,
which wholly contains the graph G1,4.

Figure 4: Example of Theorems 1 and 2 for G1,4.
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Objective

Our goal is to provide examples of connected graphs having diameter d and

less than d + 1 D-eigenvalues. This answers a question stated by Atik and Panigrahi

in [4, Problem 4.3].

Acknowledgment

About the problem proposed by Atik and Panigrahi in [4], it can be said that

there are other connected graphs with diameter 𝑑, in addition to distance regular

graphs, having less than 𝑑 + 1 distinct 𝐷-eigenvalues. More specifically, the

graphs presented in this work have exactly 4 distinct 𝐷-eigenvalues. For future

works, we are interested in characterize a class of distance-biregular graphs with

this property.

In our example we consider two bipartite graphs 𝐺1 and 𝐺2 described in figures

2 and 3. We have that 𝑉 𝐺1 = 20 and 𝑉 𝐺2 = 70, and that 𝑑𝑖𝑎𝑚 𝐺1 = 5 and

𝑑𝑖𝑎𝑚 𝐺2 = 7. However, both graphs have exactly four distinct 𝐷-eigenvalues.

These graphs and their respectively 𝐷-spectrum are shown as follows.

In particular, our examples are both distance-biregular graphs, for a precise

definition see [3].

Introduction

Examples

Conclusions
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𝑠𝑝𝑒𝑐𝑡 𝐺2 =
245
1

0
62

−5
1

−40
6

𝑠𝑝𝑒𝑐𝑡 𝐺1 =
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Figure 2: The graph 𝑮𝟏.

It is known, by [1], that if 𝐺 is a graph of diameter 𝑑 then the adjacency matrix

of 𝐺 has at least 𝑑 + 1 distinct eigenvalues. We can see in [2] that distance-regular

graphs actually attains this minimum, that is, they have exactly 𝑑 + 1 distinct

adjacency eigenvalues.

A simple connected graph 𝐺 is called distance-regular if it is regular, and if for

any two vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) at distance 𝑖, there are constant number of neighbors

𝑐𝑖 and 𝑏𝑖 of 𝑦 at distance 𝑖 − 1 and 𝑖 + 1 from 𝑥, respectively.

It seems reasonable to ask whether these results can be extended to the

eigenvalues associated with the distance matrix (𝐷 -eigenvalues) of a simple

connected graph 𝐺. Indeed, Lin et al. [5] ask if, for a graph 𝐺 with diameter 𝑑, its

distance matrix has at least 𝑑 + 1 distinct eigenvalues. Atik and Panigrahi give a

negative answer to this problem in [4]. Moreover, they prove that a distance-regular

graph with diameter 𝑑 has at most 𝑑 + 1 distinct 𝐷-eigenvalues and leave the

following question: “Are there connected graphs other than distance regular graphs

with diameter 𝑑 and having less than 𝑑 + 1 distinct 𝐷-eigenvalues?”.

In what follows, we answer this question positively by given two examples of

connected graphs with diameter 𝑑 having less than 𝑑 + 1 distinct 𝐷-eigenvalues.

Figure 1: 𝑪𝟔 and Petersen graph are examples of distance regular graphs. More generally, 𝑪𝒏 is a

distance regular graph.

Figure 3: The graph 𝑮𝟐.



Conflict Free Closed Neighborhood Coloring Game
Rodrigo Chimelli¹, Simone Dantas¹

In Cellular Networks, communication between bases and mobile
devices is established via radio frequencies. Interference occurs if one
particular device communicates with two different bases that have the
same frequency. So, every device must contact a base with an unique
frequency and, since having a lot of different frequencies is expensive,
it’s important trying to minimize their quantity, in a way that there
exists no interference.
With that motivation, in 2002, Even, Lotker, Ron and Smorodinsky [1]
introduced the concept of Conflict Free coloring in a geometric
scenario, which itself led to the study of CFCN coloring in graphs, and,
in 2015, Gardano and Rescigno [2] proved that CFCN coloring is NP-
complete.
Inspired by this problem, and by the well known coloring game, we
introduce a game theoretical approach to CFCN coloring, and
determine the minimum number of colors necessary for Alice to have a
winning strategy in the case of Complete Graphs.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CAPES-
PrInt project number 88881.310248/2018-01, CNPq and FAPERJ.

Theorem:  Alice wins CFCN k-coloring game on a complete graph G
on n vertices if and only if  𝑘 > !

"
.

¹ Federal Fluminense University, Brazil. rodrigochimelli@id.uff.br , sdantas@id.uff.br
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CFCN Coloring

CFCN Coloring Game
Given a graph G and k >1 colors, two players, Alice and Bob,
take turns coloring vertices of G such that at each turn for every v
with a fully colored N[v], the induced subgraph G[N[v]] is CNCF
k-colored. The goal of Alice is to obtain a CFCN k-coloring of G
while Bob does his best to prevent it. Alice wins if at the end G
has a CFCN k-coloring; otherwise Bob wins.

A CFCN coloring of a graph G is an assignment of colors to the
vertices of G such that each vertex v in G has an uniquely colored
vertex in its closed neighborhood N[v] (the set of all vertices adjacent
to v including itself). A CFCN k-coloring of a graph G is a CFCN
coloring with at most k colors. We say that N[v] is fully colored if each
vertex of N[v] has a color assigned to it. A graph together with a CFCN
k-coloring is said to be CFCN k-colored. [1] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free

colorings of simple geometric regions with applications to frequency
assignment in cellular networks, SIAM J. Comput. 33 (1) (2004)
94–136.
[2] L. Gardano, A. Rescigno, Complexity of conflict-free colorings
of graphs, Theor. Comput. Sci. 566 (2015) 39-49

CFCN Coloring of Complete Graphs

Sketch of the proof: Let k>1 be the number of available colors. Without
loss of generality, Alice starts playing in any vertex with color 1.
We claim that Alice always wins if n ≤ 4 and k=2 (winning for any k).
Indeed if n=1, Alice colors the vertex with 1. If n=2, Alice colors a
vertex with 1 and then Bob is forced to color the other vertex with 2. If
n=3, on the 1st turn she colors a vertex with 1 and on the 3rd with 2. If
n=4, Alice guarantees that by the 3rd turn, without loss of generality,
there are two vertices colored with 1 and one vertex colored with 2,
thus Bob has to finish the coloring with 1 or another color different
from 2.
If n>4, the proof is based on the following strategy.
Assume that 𝑘 ≤ !

"
, Bob colors a vertex with 2. If Alice colors the

next vertex with 1 (resp. 2), Bob colors a vertex with 2 (resp. 1). On the
following turns, independently of the colors chosen by Alice, Bob
chooses the other colors twice and the game ends. If Alice colors the
next vertex with a color c not in {1,2}, then Bob colors the next ones
with 1, 2, c, and then chooses the remaining colors twice. In any case
Bob wins the game.
Now assume 𝑘 > !

"
. If the number of vertices is even then Alice

always plays 1. If the number of vertices is odd then Alice does the
same strategy until her last turn, in which she chooses 1 or one of the
remaining colors. In both cases, Alice wins because the graph doesn’t
have enough vertices for Bob to guarantee that each colors is used
twice.Alice                                   Bob                                    Alice

We refer to the next figure for a CFCN 2-coloring game on K5,
where white vertices are uncolored ones. The game ends on the 4th
turn because, no matter which color Alice chooses for the 5th turn ,
it creates a fully colored neighborhood that is not CFCN 2-colored.

Complete graphs have a CFCN 2-coloring, by coloring one vertex
with the first color and the others with the second.

Bob                                   Alice                                    Bob

Alice                      Bob                     Alice                      Bob                  

The figure below shows a CFCN 3-coloring game on K6, where
white vertices are uncolored ones. The game ends on the 6th turn
because the Graph is CFCN 3-colored.



In genetics, phenotype refers to characteristics of the individual
that can be visible or detectable, and polygenes are groups of
genes that produce repeated variations. Polygenic inheritance
refers to a single inherited phenotypic trait that is controlled by
two or more different genes. The interaction that occurs between
genes (polygenes) that convey the inherited characteristics
happens in such a way that each one of them is responsible for a
portion of the resulting phenotype. The pattern of inheritance
distribution, in this case, follows the pattern of Newton's
Binomial, (p + q) n, where n is the number of polygenes, p
represents the dominant genes (B and G) and q represents the
recessive (b). In our study, we develop Newton’s binomial for the
eye color problem [3].
The eye color results from at least two genes. The first, OCA2 

(oculocutaneous albinism II), comes in two forms: B (brown) and 
b (blue). The second gene, called GEY (green eye color), comes 
also in two forms: G (green) and b (blue). The first thing to notice 
is that the gene B is dominant over both G and b. And, as well, G 
is dominant over b (recessive). In other words, a person 
heterozygote BbGb, despite having the gene G, she has brown 
eyes. Thus, we could calculate the probability of their progenies 
being born with brown, green or blue eyes shown in Table 1 [4]. 
Other genes produce spots, rays, rings and pigment diffusion
patterns.
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The teaching of Combinatorial Analysis is still done in a very
mechanical way by some teachers who, for the most part,
memorize formulas without real content domain. This practice
is repeated superficially, thus not stimulating combinatorial
reasoning [1]. The vast majority of books and websites present
this content only through formulas, without showing their
relationship to applicability, making it difficult for students to
learn. Thus, we present an application of Newton's Binomial, as
a way of intuitively teaching such content. Since the binomial is
used in many areas, we choose an interdisciplinary study with
Biology, more specifically, in Genetics. In this work, we show
how the binomial is presented in Genetics and why it is so
important to understand certain characteristics inherited from
our ancestors, such as the color of the eyes. We use concepts
of Polygenic (or Quantitative) Inheritance [2].

Introduction Application
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The aim of this work is to present a new way of teaching
Newton's Binomial through an interesting application related to
Genetics, without the early use of formulas. In addition, we
show the relationship between the binomial and the
combinatorial analysis: how is the combination present in
terms of the binomial and what do they represent in its
expansion?

TEACHING 
NEWTON’s
BINOMIAL 

WITH 
GENETICS

The methodology consisted of studying applications in
genetics that involve Newton's Binomial; choosing an
application and developing playful material for teaching the
content which included simulations and short films.
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BB Bb bB bb

GG BBGG BbGG bBGG bbGG

Gb BBGb BbGb bBGb bbGb

bG BBbG BbbG bBbG bbbG

bb BBbb Bbbb bBbb bbbb

Table 1: Cross between two heterozygotes
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Introduction

Given a graph G and a set of colors C , a vertex coloring

α : V (G) → C is an assignment of colors from C to the

vertices of G. If there are no adjacent vertices with the

same color, α is proper. Let β be a not necessarily proper

vertex coloring of G such that for every two distinct col-

ors, there are adjacent vertices in G assigned these col-

ors. If β is proper, then it is an achromatic (or complete)

coloring of G. If β is nonproper, then it is a pseudoachro-

matic (or nonproper complete) coloring ofG. If β is a pseu-

doachromatic coloring of G and for every color i, there is

an edge ofGwhose both vertices are colored i, then β is a

strong pseudoachromatic (or strong nonproper complete)

coloring of G. (See Figure 1.) The maximum number of

colors of a strong pseudoachromatic coloring is its strong

pseudoachromatic number (or strong achromatic number),

ψ∗(G).

2 2

1

33

1 1 1

1 1 11 1 2 2 2

1 2 3

1 2 3

Figure 1: A strong pseudoachromatic coloring for P5, P3, C8
and K3,3.

Historical context

Chartrand and Zhang [1, p. 329] presented the strong pseu-

doachromatic coloring (they use the term ''nonproper com-

plete coloring'') in the Study Project 6 [1, p. 442]. They ask

for bounds to the pseudoachromatic number in terms of

the number of edges and suggest investigating the strong

pseudoachromatic number of paths and graphs in general.

Previous results

Although there are many studies of the achromatic color-

ing (see Chartrand and Zhang [1, p. 329]), the only pub-

lished paper on strong pseudoachromatic coloring is by

Liu, Li, and Liu [2]. They present bounds for the strong

pseudoachromatic number in the general case and deter-

mine the strong pseudoachromatic number of complete

graphs, paths, cycles, complete multipartite graphs, com-

plete biequipartite graphs from which a perfect matching

is deleted, wheels, fans, and some line graphs.

Motivation

LetG be a graph and β : V (G) → C be a pseudoachromatic

coloring of G. By the definition of pseudoachromatic col-

oring, for each color i ∈ C , there must be an edge whose

both vertices are colored i. So, |C| is at most the size of a

maximum matching ofG, denoted by α′(G). Consequently,
ψ∗(G) ≤ α′(G). By the previous results [2], this upper

bound is tight, since ψ∗(G) = α′(G) when G is a complete

graph or a complete multipartite graph. (See Figure 2.)

11

1

1

2 3
1

2 32 2

1

Figure 2: A maximum strong pseudoachromatic coloring

and a maximum matching (in red) ofK5 and K2,2,3.

A graph G is a split graph iff V (G) can be partitioned into

a maximum clique Q and a stable set S. Figure 3 exhibits

a split graph. The size of Q is denoted ω(G). The bipartite

subgraph of G obtained by removing the edges between

vertices of Q is denoted BG.

Our contribution

Theorem 2 If G is a split graph, then

α′(G) = α′(BG) +
ω(G) − α′(BG)

2

 .

Theorem 3 If G is a split graph, then ψ∗(G) = α′(G).
Sketch of proof. Since ψ∗(G) ≤ α′(G) for any graph G, it
is sufficient to exhibit a strong pseudoachromatic color-

ing with α′(G) colors. Let Q be a maximum clique in G.
Consider a maximum matching MB in BG and a maximum

matchingMQ in G[Q \ V (BG)]. For each edge inMB ∪MQ,

assign a new color to its vertices (the same color for both

vertices). Assign a color previously used to the remaining

vertices. Since, for each color i, there is a vertex in Q col-

ored i and an edge ofMB ∪MQwhose vertices are colored

i, we have a strong pseudoachromatic coloring. �

1 2

11 3 2 4 43
Q

S
Figure 3: Amaximum strong pseudoachromatic coloring of

a split graph.
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Introduction
Starting from the eigenvalues of a matrix associated to a graph, spectral graph

theory seeks to deduce combinatorial properties of the graph. For this, we associate
a graph 𝐺 to a matrix 𝑀 and analyze the eigenvalues of 𝑀. Motivated by the graph
isomorphism problem, it is of interest to study, for a graph 𝐺, what fraction of all
graphs is uniquely determined by the 𝑀-spectrum of 𝐺. We propose representing a
graph using the Smith Normal Form (SNF) of certain distance matrices. We provide
numerical evidence that this algebraic representation may do a better job in
distinguishing graphs.

Aouchiche and Hansen reported in [2] enumeration results on cospectral trees with at
most 20 vertices with respect to 𝐷, 𝐷! and 𝐷" matrices. For 𝐷, they found that
among the 123,867 trees on 18 vertices, there are two pairs of 𝐷-cospectral trees.
Among the 317,955 trees on 19 vertices, there are six pairs of 𝐷-cospectral trees.
There are 14 pairs of 𝐷-cospectral trees over all the 823,065 trees on 20 vertices.
Surprisingly, after the enumeration of all 1,346,023 trees on at most 20 vertices, they
found no 𝐷!-cospectral trees and no 𝐷"-cospectral trees. This fact led Aouchiche
and Hansen to conjecture that every tree is determined by its distance Laplacian
spectrum, and by its distance signless Laplacian spectrum.

Analogously, for the SNF of 𝐷, 𝐷! and 𝐷" of trees, one can obtain some similar
insights. Hou and Woo obtained in [3] that the SNF of the distance matrix for any
tree with 𝑛 + 1 vertices equals 𝐼#⨁𝐼$%#⨁(2𝑛). From which follows that all trees
with 𝑛 vertices are 𝐷-coinvariant graphs. On the other hand, after enumerating
coinvariant trees with at most 20 vertices with respect to 𝐷! and 𝐷", we found no
𝐷!-coinvariant trees and no 𝐷"-coinvariant trees among all trees with up to 20
vertices. This fact led us to conjecture that all trees are determined by the SNF of 𝐷!,
and, analogously, by the SNF of 𝐷".

We focus on the following matrices for connected graphs: the adjacency matrix 𝐴,
the Laplacian matrix 𝐿, the distance matrix 𝐷, the signless Laplacian matrix 𝑄, the
distance Laplacian matrix 𝐷! and the distance signless Laplacian matrix 𝐷".

Extensive research has been devoted to understand cospectral graphs, but much less
has been dedicated to understand coinvariant graphs and its potential to characterize
graphs. The reason for this could be that for matrices 𝐴, 𝐿, 𝑄 and 𝐷, there is a large
proportion of connected graphs having a coinvariant graph, as Figure 1.1 shows.

Figure 1.2 displays the number of cospectral and coinvariant graphs for matrices 𝐷!
and 𝐷". We also include the spectral graphs for matrix 𝑄, since according to Figure
1.1, this would be the best invariant for distinguishing graphs using only the
spectrum. According to our results, the SNF of 𝐷" performs better than the spectrum
for distinguishing graphs for the considered matrices. Details can be found in [1].

Figure 1: The fraction of connected graphs on n vertices that have at least one cospectral
graph with respect to a certain associated matrix is denoted as 𝒔𝒑𝒏 . The fraction of
connected graphs on n vertices with respect to a certain associated matrix that have at
least one coinvariant graph is denoted as 𝒊𝒏𝒏.

Enumeration
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Coinvariant trees

Spectrum and invariant factors

The eigenvalues of a matrix 𝑀(𝐺) associated with a graph 𝐺 are called the 𝑀-
spectrum of 𝐺, which is the multiset that allows multiple instances for each of its
eigenvalues.𝑀-𝑐𝑜𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 graphs are graphs that share the same𝑀-spectrum.

The 𝑆𝑚𝑖𝑡ℎ 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑚 of an integer matrix 𝑀, denoted by 𝑆𝑁𝐹(𝑀), is the
unique diagonal matrix such that 𝑆𝑁𝐹 𝑀 = 𝑑𝑖𝑎𝑔 d&, … , d', 0, … , 0 = 𝑃𝑀𝑄 for
invertible matrices 𝑃, 𝑄 ∈ 𝐺𝐿(𝑛, ℤ) such that 𝑟 is the rank of 𝑀 and 𝑑(|𝑑) for 𝑖 < 𝑗.
The invariant factors of 𝑀 are the integers in the diagonal of 𝑆𝑁𝐹 𝑀 . We say that
graphs 𝐺 and 𝐻 are𝑀-coinvariant, if the SNFs of integer matrices𝑀(𝐺) and𝑀(𝐻)
are the same.
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Thinness and proper thinness
A graph G = (V, E) is k-thin if there exist an
ordering and a k-partition of V s.t., for
u < v < w, if u, v belong to the same class and
uw ∈ E, then vw ∈ E. The minimum such k is
called the thinness of G and denoted thin(G) [1].
Interval graphs1 are exactly the 1-thin graphs,
and 2-thin graphs include convex bipartite
graphs. Complements of induced matchings
have unbounded thinness.

A 2-thin graph and a proper 2-thin graph.
A graph G = (V, E) is proper k-thin if there exist
an ordering and a k-partition of V s.t., for
u < v < w, if u, v belong to the same class and
uw ∈ E, then vw ∈ E, and if v, w belong to the
same class and uw ∈ E, then uv ∈ E. The
minimum such k is called the proper thinness of
G and denoted pthin(G) [2].
Proper interval graphs are exactly the proper
1-thin graphs, and interval graphs have
unbounded proper thinness.

2-diagonal box intersection models
A set of boxes drawn with sides parallel to the
Cartesian axes of the plane is 2-diagonal if their
upper-right corners are pairwise distinct and lie
in two diagonals y = x+ d1, y = x+ d2, eitherin the 2nd or in the 4th quadrant, and weakly
2-diagonal if there is no quadrant restriction.

A 2-diagonal and a weakly 2-diagonal model.

Blocking models
A model is blocking if for two non-intersecting
boxes b1, b2 in the upper and lower diagonal,resp., either the vertical prolongation of b1intersects b2 or the horizontal prolongation of b2intersects b1.

Blocking 2-diagonal model and not.

Characterizations
The main results of this work are the following characterizations of 2-thin and proper 2-thin graphs as
intersection graphs of boxes drawn with sides parallel to the Cartesian axes of the plane.
Theorem. A graph is 2-thin if and only if it has a blocking 2-diagonal model.
The blocking property is necessary since there are graphs with thinness 3 and a 2-diagonal model.
A model is bi-semi-proper if for two boxes b, b′ in the same diagonal, x2 < x′2 implies x1 ≤ x′1 and y1 ≤ y′1 .
Theorem. The following statements are equivalent:
1.G is a proper 2-thin graph.
2.G has a bi-semi-proper blocking 2-diagonal model.
3.G has a bi-semi-proper weakly 2-diagonal model. Example of bi-semi-proper (first situation) andnot bi-semi-proper (last three situations).

The bi-semi-proper property is necessary as interval graphs may have arbitrarily large proper thinness.
These models are based on a model by Mannino, Oriolo and Chandran, defined to show that k-thin
graphs can be represented as intersection graphs of boxes in the k-dimensional Euclidean space.

2-thin graphs as VPG graphs
A graph is Bk-VPG if it is the vertex intersection
graph of paths with at most k bends in a grid.
An L-graph is a B1-VPG graph admitting a
representation with all the paths having the
same of the four possible shapes L, L, L, L.
B0-VPG graphs have unbounded thinness.
2-thin graphs are L-graphs (thus B1-VPG).
The wheelW4 is 2-thin and not B0-VPG.
3-thin graphs are B3-VPG.
Bonus track: new upperbound
The pathwidth (resp. bandwidth) of a graph G
can be defined as one less than the maximum
clique size of an interval (resp. proper interval)
supergraph of G, chosen to minimize its
maximum clique size [3].
It was proved in [1] that

thin(G) ≤ pw(G) + 1
We prove that, if |E(G)| ≥ 1, then

pthin(G) ≤ bw(G)
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Introduction

The rainbow connection number of a connected graph G,
denoted rc(G), is the least k for which G admits a (not nec-
essarily proper) k-edge-coloring such that between any pair
of vertices there is a path whose edge colors are all distinct.
This parameter has important applications [3].

Remark ([1]) If G is a connected and not trivial graph with
n vertices, then diam(G) ≤ rc(G) ≤ |E(G)|.
We present a near-tight bound for the rainbow connection
number of snake graphs, a class commonly studied in label-
ing problems [2, 5].

Let ` ≥ 3, k ≥ 1, n ≥ 2. An `-gon k-multiple
::::
snake

graph over n vertices, denoted S(`, k, n), is obtained from
Pn : v0v1 . . . vn−1 by adding k multiple edges between vi and
vi+1 for 0 ≤ i ≤ n− 2 and making `− 2 successive subdi-
visions at each edge added. See Fig. 1.

Figure 1. S(7, 4, 6)

The rainbow connection number is already known [4] for
G = S(3, k, n) with k ∈ {1, 2, 3}. In this case,

rc(G) =

{
diam(G) + 1, if n = k = 3;
diam(G), otherwise.

H Partially supported by CNPq (428941/2016-8) and UTFPR.
Snake design vector created by freepik - www.freepik.com

Result
Lemma
Let G = S(`, k, n).

diam(G) =





b`/2c, if n = 2 and k = 1;
`− 1, if n = 2 and k > 1;
2b`/2c + n− 3, if n > 2.

Theorem
Let G = S(`, k, n).

rc(G) ≤
{
diam(G) + 1, if ` is even or n = 2;
diam(G) + 2, if ` is odd.

This bound is near-tight, since we know snake graphs which
have rc(G) = diam(G) + 1.

Proof (sketch). Fig. 2 shows a rainbow coloring of the block
Bi,i+1, for 0 ≤ i ≤ n− 2.

Figure 2. Bi,i+1

Fig. 3 shows S(4, 4, 4) with the rainbow coloring obtained.

Figure 3. S(4, 4, 4)
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Introduction
In the year that Celina Figueiredo, João Meidanis and Célia de
Mello celebrate another decade of life, we point out the following
result which is an immediate consequence of their papers.
Corollary 1

All reduced indifference graphs are type 1.

Let G be a simple graph. A total coloring is an assignment of
colors to the vertices and edges of G such that no two adjacent
or incident elements receive the same color. See Fig. 1.

Figure 1: A total coloring of the Hajós graph.

The minimum number of colors for a total coloring of G is the to-
tal chromatic number, χ ′′(G). By definition, χ ′′(G) ≥ ∆(G)+1.
Vizing and Behzad posed the famous Total Coloring Conjecture.

Total Coloring Conjecture (TCC) [1, 2]
χ ′′(G) ≤ ∆(G) + 2

If G has χ ′′(G) = ∆(G) + 1, it is type 1, otherwise it is type 2.
By Theorem 1, it is NP-complete to decide if a graph is type 1 for
the general case.

Theorem 1 [3]
To decide if a cubic bipartite graph G has χ ′′(G) = ∆(G) + 1
is NP-complete.

Total coloring of dually chordal graphs
A graph is dually chordal if it is the clique of a chordal graph. Du-
ally chordal graphs generalizes known subclasses of chordal graphs
such as interval graphs and indifference graphs. Celina Figueiredo,
João Meidanis and Célia de Mello [4] presented the following re-
sult.

Theorem 2 [4]
If G is dually chordal, the TCC holds. Moreover, if ∆(G) is
even, G is type 1.

The proof of Theorem 2 gives a polynomial-time algorithm that
yields an optimum total coloring of dually chordal graphs with even
maximum degree.

Reduced indifference graphs
G is an indifference graph if and only if its vertices can be ordered
such that those that belong to the same maximal clique are con-
secutive. This order is known as indifference order. Two vertices
are true twins if they are adjacent and belong to the same maximal
cliques. A graph is reduced if it does not contain true twins. See
Fig. 2.

Figure 2: A reduced indifference graph.

Celina Figueiredo, Célia de Mello and Carmen Ortiz [5] presented
the following interesting property on indifference graphs.

Theorem 3 [5]
If G is an indifference graph that does not contain maximum
degree true twins, then G has a matching M that covers every
maximum degree vertex. Moreover, the graph G−M, obtained
from G by removing the edges of M, is an indifference graph.

Fig. 3 exhibits an indifference graph and a matching that covers
its maximum degree vertices.

Figure 3: A matching according to Theorem 3.

We use the same technique presented in the proof of Theorem 2
and the property presented in Theorem 3 to prove Theorem 4 and,
consequently, Corollary 1. Our proof also gives a polynomial-time

algorithm for an optimum total coloring of reduced indifference
graphs.

New result

Theorem 4
If G is an indifference graph that does not contain maximum
degree true twins, then G is type 1.

Sketch of proof. If ∆(G) is even, χ ′′(G) = ∆(G) + 1, by The-
orem 2. Suppose that ∆(G) is odd. Since G does not contain
maximum degree true twins, it has a matching M that covers
all maximum degree vertices, by Theorem 3. By Theorem 2,
χ ′′(G −M) = ∆(G). Consider an optimum total coloring of
G −M as in the proof of Theorem 2. Assign a new color for
the edges of M. If the endvertices of an edge in M receive the
same color, G has maximum degree true twins, a contradiction.
So, χ ′′(G) = ∆(G) + 1. �
Fig. 4 presents a total coloring for the graph of Fig 2.

Figure 4: An optimum total coloring according to Theorem 4.

Corollary 1 is an immediate consequence of Theorem 4.
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The problem of grid embedding is that of drawing a graph G onto a rectangular two-
dimensional grid (called simply grid) such that each vertex v ∈ V(G) corresponds to a grid
point (an intersection of a horizontal and a vertical grid line) and the edges of G correspond to
paths of the grid. Grid embedding of graphs has been considered with different perspectives
[2, 5, 6]. In [5], linear-time algorithms are described for embedding planar graphs having their
edges drawn as non-intersecting paths in the grid, such that the maximum number of bends of
any edge is minimized, as well as the total number of bends.

Introduction

We are interested in embedding trees T with ∆(T) ≤ 4 in a rectangular grid, such that the
vertices of T correspond to grid points, while edges of T correspond to non-intersecting
straight segments of the grid lines. The aim is to minimize the maximum number of bends of a
path of T. We provide a quadratic-time algorithm for this problem. With this algorithm, we
obtain an upper bound on the number of bends of EPG models of VPT∩EPT graphs [3, 4].

Acknowledgment

Let T be a tree such that ∆(T) ≤ 4. Consider the problem of embedding such a tree in a grid 𝒢,
so that the vertices must be placed at grid points and the edges drawn as non-intersecting
paths of 𝒢 with no bends, which we will call a model of T. See Figures 1-5 for key notations.

Figure 1: Two possible models M1 (left) and M2 (right) of the
same tree T.

The algorithm

Objective

Embedding trees in a grid

EPG models of VPT∩EPT graphs
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Figure 2: The number of bends of the path connecting u and v in
M is denoted by bM(u, v).

Figure 3: The number of bends of modelM is
b(M) =max{bM(u, v) | u and v are leaves of T}.

Figure 4: The number of bends of tree T is
b(T) =min{b(M) | M is a model of T}.

Question
Over all possible models, consider the problem of finding one in which the maximum
number of bends of a path of T, over all of them, is minimum.

Theorem
Given a tree T, let M be the model produced by the execution of the algorithm on input T.
Then, b(M) = b(T).

Figure 6: Construction of a Bk-EPG representation
with k ≤ b(T).

We provide an upper bound on the
number of bends of an EPG representation
of VPT∩EPT graphs. The VPT∩EPT graphs
are those that can be represented in host trees
with maximum degree at most 3 [3]. In [1],
this class is characterized by a family of
minimal forbidden induced subgraphs. An
EPG model R = {Pi | 1 ≤ i ≤ 10} is shown in
Figure 6, obtained from the family P = {Qi | 1
≤ i ≤ 10}.

Given a model M, let bl(p,v) be the maximum
number of bends of a path in M having as
extreme vertices p and a leaf l ∈ V(T), over
all paths that contain v ∈ V(T).
Let M be a model of T and v ∈ V(T). Let
N(v) = {ui(v) | 1 ≤ i ≤ d(v)} be the
neighborhood of v and bi(v) = bl(v, ui(v)).
For d(v) < i ≤ 4, define “virtual” neighbors
ui(v) = ∅ for which bi(v) = −1. Assume that
the neighbors (both real and virtual) are
ordered so that bi(v) ≥ bi+1(v) for all
1 ≤ i < 4. See example in Figure 5.

Figure 5: The neighborhood of vertex i ordered according to
bl (i, j) for all j ∈ N(i).

Let v ∈ V(T) and M a model of T. We say that v is balanced if u1(v) and u2(v) are mutually in
the same horizontal or vertical grid line in M (and, therefore, so are u3(v) and u4(v)).

A tree T can be built from a single vertex v0 by a
sequence v1, v2, . . . , vn−1 of vertex additions, each
new vertex vi adjacent to exactly one vertex pi of T
for all 1 ≤ i < n. We will call that T is incrementally
built by (v0, ∅), (v1, p1), . . . , (vn−1, pn−1).
Algorithm 1 consists of iteratively adding vertices
to T and, for each new vertex v, traversing T in
post-order having v as the root. The operation to be
carried out in each visited vertex is to balance v if
it is not balanced.



Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
However, the assumption that every block Bi is -EPG allows their EPG representations to be
transformed into interval models. It is possible to show how to build an interval model of each block,
given an -EPG representation of it. Furthermore, the EPG representations of the subtrees Tij, 1 ≤ j ≤ ji,
of Bi, for all i, obtained after the induction step can be transformed into -EPG models by 90 degree
clockwise rotation so that the entire representation is -EPG.
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EPG graphs were first introduced by Golumbic et al in [2] motivated from circuit layout problems [1].
In B1-EPG representations, each path has one of the following shapes x = { , ,⌟, }, besides horizontal
or vertical segments. One may consider more restrictive subclasses of B1-EPG by limiting the types of
bends allowed in the representation, that is, only the paths in a subset of x are allowed.
Ex.: The -EPG graphs are those in which only the “ ”or the “ ” shapes are allowed.

Introduction

We show that two superclasses of trees are B1-EPG (one of them being the cactus graphs). On the
other hand, we show that the block graphs are -EPG and provide a linear time algorithm to produce
-EPG representations of generalization of trees. These proofs employed a new technique from
previous results based on block-cutpoint trees of the respective graphs.
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Figure 1: A graph and its respective BC-tree. The cut
vertices are marked in red.

Thus, we can attach each one of the representations to its respective portion of the model being built,
rotated 90 degrees in counter-clockwise (see Figure 5).

References

Theorem 1
Let G be a graph such that every block of G is B1-EPG and every cut vertex v of G is a universal vertex
in the blocks of G in which v is contained. Then, G is B1-EPG.
Proof. (Sketch) The theorem is proved by induction. Actually, we prove a stronger claim, stated as
follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut
vertex r, there exists a B1-EPG representation R={Pv | v ∈ V(G)} of G in which:
i. Pr is a vertical path with no bends in R;
ii. all paths but Pr are constrained within the horizontal portion of the grid defined by Pr and at the

right of it.

Figure 2: The rooted BC-tree T of a graph.

From T (the BC-tree of G shown in Figure 2), build the
representation R of G as follows. First, build an
arbitrary vertical path Pr in the grid 𝒢, corresponding
the root r. Next, divide the vertical portion of 𝒢 defined
by Pr and at the right of it into t vertical subgrids, 𝒢1,
𝒢2, . . . , 𝒢t, with a row space between them such that
the i-th subgrid will contain the paths corresponding to
the cut vertices that are descendants of Bi in T. So, each
subgrid Gi is constructed as shown in Figure 3.

Let R’ be a B1-EPG representation of Bi and let Pr’
be an -path corresponding r in R’. Since r is universal
to Bi, it is possible to transform R’ such that all
universal vertices become vertical paths as shown in
Figure 4. For the Tij portion of the representation, let
rij be the root of Tij. Applying induction hypothesis,
we obtain B1-EPG representations of each subtree that
have vertical paths representing each root and the
entire representation is bounded as described
previously in (ii).

Figure 3: A subgrid 𝒢i.

Figure 4: Transforming R’.

Figure 5: B1-EPG representation of G after induction step.

Cactus graphs are B1-EPG

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. The
difference here is that every block is either an edge or a cycle. It is possible therefore to construct B1-
EPG representations of every block Bi. Furthermore, the B1-EPG representations of the subtrees Tij,
1 ≤ j ≤ ji, of Bi, for all i, obtained after the induction step can be shown possible to be attached into
vertical or horizontal regions of the cycle/edge so that the entire representation is B1-EPG.

Theorem 2
Let G be a graph such that every block of G is ⌞-EPG and every cut vertex v of G is a universal vertex in
the blocks of G in which v is contained. Then, G is B1-EPG.

Theorem 3

We first represent the children of Bi as disjoint -shaped paths, all sharing the same grid column in
which Pr lies. For each Bi, we build the paths in Bi’, that correspond to vertices of Bi that are not cut
vertices of G (as those in black in Figure 1), and the paths in Tij, belonging to G[Tij], for all 1 ≤ j ≤ ji.
So, it remains to define how the paths belonging to the regions Bi’ and Tij will be built.

Objective

We describe a B1-EPG representation of a superclass of trees, inspired on the representation of trees
described in [2]. The novelty of our results is the usage of BC-trees to obtain EPG representations,
which will be employed to obtain B1-EPG representations of more general classes of graphs.

-EPG

Consider a graph G. Let T be a bipartite
graph in which the parts X and Y are
such that X contains one vertex b for
each block B of G, called a block vertex,
and Y contains one vertex c for each cut
vertex c’ of G, called as such in T.
Vertices b and c form an edge if c’ ∈
V(B). It is easy to see that T is in fact a
tree. We define T as the block-cutpoint
tree of G [3] (BC-tree). See Figure 1.

B1-EPG representations 

Preliminaries
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B0-CPG graphs

I An undirected graph G = (V ,E) is called a VPG graph ([1]) if one can associate a path in a rectangular grid with each vertex
such that two vertices are adjacent if and only if the corresponding paths intersect on at least one grid-point.

I An undirected graph G = (V ,E) is then called a Bk -VPG graph, for some integer k ≥ 0, if one can associate a path with at
most k bends in a rectangular grid with each vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-point.

I An undirected graph G = (V ,E) is said to be B0-CPG if one can associate a horizontal or vertical path in a rectangular grid with
each vertex, such that two vertices are adjacent if and only if the corresponding paths intersect on at least one grid-point without
crossing each other and without sharing an edge of the grid.

Figure: On the left, a B0-CPG representation of the graph on the right.

L-Contact graphs

I An x-graph is a graph with a B1-VPG representation such that all the paths in the representation have the shapes {|,−, x}. We
will say that the graph is an strict x-graph if the paths only have the shape x.

I An (strict) x-contact graph is an (strict) x-graph such that all the paths in the representation do not cross each other and do not
share an edge of the grid.

I A representation of a strict x-contact graph such that no path intersects another in a bend point will be called a basic
representation.

Type 1 Type 2

Figure: Two representations of K3 as a strict x-contact graph.

Relation with planarity

I B0-CPG ⊆ x-contact and there are non-planar B0-CPG graphs.

Figure: On the left, a B0-CPG representation of the non-planar graph on the right.

I As a consequence, there are non-planar x-contact graphs.
I x-contact ⊆ B1-CPG.

Theorem ([3])

For every k ≥ 0 there is a planar graph G such that G is Bk+1-CPG but not Bk -CPG.

Theorem

If G is strict x-contact then G is planar.

Figure: The planar representation obtained from the strict x-contact representation of a graph.

Laman graph

I A Laman graph is a graph on n vertices such that, for all k , every k -vertex induced subgraph has at most 2k − 3 edges, and
such that the whole graph has exactly 2n − 3 edges.

I An x∗-contact representation is a B1-CPG representation which is strict and basic.
I an x∗-contact representation is maximal if every endpoint that is neither bottommost, topmost, leftmost, nor rightmost makes a

contact, and there are at most three endpoints that do not make a contact.

Theorem ([4])

If a graph G has a maximal x∗-contact representation in which each inner face contains the right angle of exactly one x, then G
is a planar Laman graph.

I As a consequence, we have the following result.

Theorem

Every maximal strict x-contact graph is a planar Laman graph.

Relation with chordality

Lemma

A clique in a strict x-contact graph has size at most three.

Theorem

Let G be a chordal graph. G is strict x-contact if and only if G is K4-free. Moreover, G admits a basic representation.

Let T be the family of graphs defined as follows. T contains H0 as well as all graphs constructed in the following way: start with a
tree of maximum degree at most three and containing at least two vertices; this tree is called the base tree; add to every leaf v in
the tree two copies of K4 (sharing vertex v ), and to every vertex w of degree 2 one copy of K4 containing vertex w . Notice that all
graphs in T are chordal.

(a) (b)Figure: On the left the graph H0. On the right a typical graph in T .

Theorem ([2])

Let G be a chordal graph. Let F = T ∪ {K5,diamond}. Then, G is a B0-CPG graph if and only if G is F -free.

I It is immediate that x-contact graphs are K5-free and that B0-CPG ⊆ x-contact.
I Following the same ideas as in the chordal B0-CPG characterization, all the graphs in T are forbidden subgraphs.
I As a consequence, we have the following result concerning block graphs.

Theorem

Let G be a block graph. G is x-contact if and only if G is B0-CPG.
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Introducción

Todas las gráficas con las que trabajamos son gráficas finitas y simples. Este trabajo fue motivado por
un problema abierto del artículo de Graphs whose complement and square are isomorphic. Dada una
gráfica G, el cuadrado de está denotado por G2, es la gráfica que consta del mismo conjunto de vértices
de G, pero uv ∈ G2 si y solamente si la distancia de u, v en G es 1 o 2. G denota al complemento de la
gráfica G, en la cual tenemos el mismo conjunto de vértices y uv ∈ G si y sólo si uv /∈ G. Decimos que
una gráfica G es cuadrado complementaria si cumple G2 ∼= G o equivalentemente G ∼= G2. Usaremos
el término de squco para refirirnos al término cuadrado-complementario, por su abreviatura en inglés;
square-complement. Algunos ejemplos de gráficas squco son la gráfica trivial K1, el ciclo de 7 vértices
C7 y la gráfica de Franklin:

Figura 1: Ejemplos de gráficas cuadrado complementarias.

Objetivo

Dar una respuesta al problema abierto planteado en [1, 4]: Dado un número par d ≥ 4, ¿existe una
gráfica squco, d-regular con d2 + d + 1 vértices?

Desarrollo del problema

Por definición si tenemos una gráfica d-regular, tenemos que ∀ x ∈ G tenemos que degG(x) = d.
La longitud del ciclo más pequeño dentro de una gráfica se denomina cuello (girth) y es denotada por
g(G). Notemos que si tenemos una gráfica cuadrado-complementaria no trivial G que sea d-regular,
entonces G tiene como máximo d2 + d + 1 vértices; debido a que G es regular de grado d, sin pérdida
de generalidad escogemos un vértice cualquiera llamémosle u el cual tiene d vecinos, a una distancia
dos de u tenemos a lo más d(d − 1) vecinos más y por último el número de vecinos a una distancia de
al menos 3 tenemos d esto ya que G satisface la condición de ser cuadrado-complementaria, G ∼= G2 y
estos últimos vecinos a distancia 3 serán los vecinos a distancia 1 de u en G2 que también tiene que ser
d-regular. Por lo tanto |G| ≤ 1 + d + d(d− 1) + d = d2 + d + 1. Recordemos que la estructura descrita
no depende del vértice elegido al inicio pues G es d-regular. Cuando consideramos la longitud del ciclo
más pequeño, i.e. el cuello de G, se satisface que g(G) ≥ 5 si y sólo si |G| = d2 + d + 1. Las gráfi-
cas que buscamos deben cumplir: g(G) = 5 y ser 4-regulares, además de ser cuadrado-complementarias
lo que implica que |G| = 21. Un ejemplo de la estructura buscada es:

Figura 2: Andamiaje para G cuadrado-complementaria 4-regular con g(G) = 5.

El problema se encontraba en encontrar el conjunto de 26 aristas que completaba a G de la figura 2, y
la hacían ser cuadrado-complementaria de un conjunto total de 108 posibiles aristas; las cuales provie-
nen de las

(16
2

)
= 120 y a este conjunto le quitamos las aristas que forman un 3-ciclo en cada conjunto

de vértices que se encuentran a distancia 2 del vértice superior (12 aristas), dando como resultado un
conjunto de búsqueda de:(108

26

)
= 6′909, 598′959, 706′679, 434′990, 092 ≈ 7 × 1024. Para abordar el problema se optó por usar

la herramienta de programación de GAP [3] y el paquete de YAGS [2], con el cual se desarrolló un
algoritmo basado en principio en la técnica de Backtracking o branch and bound, con la finalidad de
podar posibilidades que no condujeran a alguna solución disminuyendo tiempo y opciones de solucio-
nes fallidas a explorar.

Backtracking

Backtracking es una técnica algorítmica de búsqueda en espacios combinatorios con estructura arbó-
rea; con énfasis en el podado de ramas inútiles, como lo es en nuestro caso, para hacer uso de esta
técnica debemos hacer énfasis en el podado de ramas inútiles ya que por medio de estas logramos acor-
tar el amplio espacio de búsqueda que tenemos para las soluciones. Analizando las posibles soluciones
encontramos que las gráficas tienen una simetría muy buena lo cual nos permitió encontrar un punto
clave para desechar posibilidades fallidas ya analizadas y con ello optimizar el tiempo empleado a la re-
solución de nuestro problema, pues al ir escogiendo aristas podemos desechar algunas configuraciones
isomorfas a otras analizadas con anterioridad.

Figura 3: Andamiajes con configuraciones diferentes pero isomorfas.

Resultados

Algoritmo

Después de varias versiones que lograran disminuir el tiempo y el conjunto de posibles soluciones al
problema obtuvimos un algoritmo que se compone de varias funciones, las cuales verifican cada una de
las características que buscamos verificar que satisfagan las gráficas que buscamos. Entre las cuales se
encuentran:

Que no existan triángulos, ciclos de tamaño 3, en G y en G2.

Que no existan cuadrados, ciclos de tamaño 4, en G y en G2.
Función que analiza las simetrías en la gráfica.
Verifica que cada vértice no exceda el grado 4.

Función interna del Backtrack, verifica si la solución que tenemos hasta el momento se puede com-
pletar.

Función interna del Backtrack, indica si hemos encontrado una solución de 26 aristas que completen
a G.

Verificar que se satisfaga G ∼= G2.

Además de esto se considera analizar el problema en 6 casos; los cuales provienen de ser todas las
maneras diferentes hasta isomorfismo de colocar aristas en la parte inferior de nuestro árbol sin llegar a
formar triángulos (ciclos de tamanño 3), determinados de la siguiente manera:

Figura 4: Casos a considerar con las aristas posibles con los vértices en el tercer nivel del andamiaje con 0, 1, 2 y 3 aristas
respectivamente.

Con todo ello se redujo el trabajo de analizar casi 7× 1024 de casos a tan sólo 43 casos.

Conclusiones

Después de las horas empleadas a programar dicho algoritmo que ayude a saber si existen las gráficas
cuadrado-complementarias 4-regulares con cuello 5, logramos dar respuesta de que dichas gráficas no
existen, reduciendo el conjunto de búsqueda considerablemente para dar solución a la interrogante en
tan solo 10 minutos. Además de buscar alguna característica que ayude a reducir más el conjunto de
posibilidades para dar una prueba con un número pequeño de casos. Claro el trabajo continúa analizan-
do que pasa para el caso general con gráficas cuadrado-complementarias d-regulares con g(G) ≥ 5, y
en particular para d ≥ 6 .
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1 Introduction

Let G be a simple graph. For S ⊆
V (G) ∪ E(G) and C{1, 2, . . . , k}, let c :
S → C be a mapping such that c(x) 6=
c(y) for each adjacent or incident ele-
ments x, y ∈ S. We say c is a k-total
coloring when S = V (G) ∪ E(G) and
a k-edge coloring when S = E(G). See
Fig. 1 for an example. The least j and
the least k for which G has a j-total col-
oring and a k-edge coloring are denoted
by χ′′(G) and χ′(G), respectively.

Figure 1: 9-total coloring for G

The Total Coloring Conjecture (TCC) [1,
7] asserts that χ′′(G) ≤ ∆(G) + 2 for
any G. If χ′′(G) = ∆(G) + 1, G is
Type 1; otherwise it is Type 2. To de-
cide if G is Type 1 is NP-Complete [6]. A
graphG[Q,S] is split if V (G) can be par-
titioned into [Q,S] so that Q is a clique
and S an independent set.

Theorem 1 [2] Let G be a split graph.
Then χ′′(G) ≤ ∆(G) + 2. In particular,
when ∆(G) is even G is Type 1.

Ortiz and Villanueva [5] characterized
the split-comparability graphs.

Theorem 2 [5] A split graph G[Q,S] is
a comparability graph iffQ has a parti-
tion [Ql, Qt, Qr] and its vertices can be
ordered Ql, Qt, Qr so that for any ver-
tex s ∈ S: N(s) ∩ Qt = ∅; if vk ∈
(N(s) ∩ Ql) then vk−1 ∈ (N(s) ∩ Ql);
and if vk ∈ (N(s) ∩ Qr) then vk+1 ∈
(N(s) ∩Qr).

The subset of S whose vertices are not
adjacent to Qr are denoted as Sl, those
not adjacent to Ql denoted as Sr, and
St = S \ Sl ∪ Sr.
Here we show that certain split-

comparability graphs with odd maxi-
mum degree are Type 1.

2 Previous Results

When |E(G)| >
⌊
|V (G)|

2

⌋
∆(G) we say

G is overfull and if G has a subgraph
H with ∆(H) = ∆(G) that is overfull,
then it is subgraph-overfull. Whenever
G is overfull or subgraph-overfull, then
χ′(G) = ∆(G) + 1.

Theorem 3 [3] A split-comparability
graph G has χ′(G) = ∆(G) iff G is not
subgraph-overfull.

Hilton proved the following result for
graphs with a universal vertex, i.e. a ver-
tex with degree |V (G)| − 1.

Theorem 4 [4] A graph G with a uni-
versal vertex is Type 1 iff

|E(G)| + α′(G) ≥
⌊

∆(G)
2

⌋
.

3 Our Contribution

Theorem 5 A split-comparability
graph G, with |Ql| ≥ |Qr|, is Type 1 if

|Q| ≥
(
|Sl|

|Sl| − 0.5

)
|Ql|.

Sketch of proof. We assume |Sr| 6= 0,
|Sl| 6= 0 and ∆(G) is odd, otherwise
χ′′(G) is known by Theorems 1 and 4.
By Theorem 2, Ql ∩ Qr = ∅. Assume
|Ql| ≥ |Qr|; so |Qr| ≤ |Q|

2 . We define a
split-comparability supergraph G′ of G
by adding a vertex vf twin to the largest
degree vertex v0 ∈ Ql. Since |Ql| ≥ |Qr|
and |Q|−|Ql| ≥ |Q|

2|Sl|,G
′ is not subgraph-

overfull. So, it has a ∆(G′)-edge coloring
c′, by Theorem 3. Fig. 2 shows G′ ob-
tained from the graph of Fig. 1.

Figure 2: 9-edge coloring for G′

Assign the color c′(vf , x) to x, for all x in
order to obtain a total coloring ofG−Sr.

(Fig. 3 exhibits a partial total-coloring for
the graph of Fig. 1.) As |Qr| ≤ |Q|

2 , at
most |Q| colors are used in vertices ad-
jacent or edges incident to vertices of Sr.
Since |Q| < ∆(G) some color is available
to be assigned to each vertex y ∈ Sr, and
χ′′(G) = ∆(G) + 1.

Figure 3: Extending to a total coloring
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Introduction

An L(2, 1)-labeling of a simple graph G = (V,E) is a function
f : V → {0, . . . , t} such that |f (u) − f (v)| ≥ 2 if d(u, v) = 1
and f (u) 6= f (v) if d(u, v) = 2, where d(u, v) denotes the distance
between two vertices u and v of G and t ∈ N. We say that a conflict
occurs if any of the necessary conditions to have an L(2, 1)-labeling
are not met. The span of an L(2, 1)-labeling f is the largest integer
(label) assigned by f to a vertex of G. The λ-number of G, denoted
by λ(G), is the smallest number t such that G has an L(2, 1)-labeling
with span t. Figure 1 exhibits an L(2, 1)-labeling of the Petersen
graph with the smallest span.

The L(2, 1)-labeling problem was introduced
by Griggs and Yeh [3] in 1992, motivated by
problems of frequency assignment to trans-
mitters. The main unsolved problem regard-
ing L(2, 1)-labelings is the Griggs and Yeh’s
Conjecture, which states that every simple
graph G with maximum degree ∆(G) ≥ 2
has λ(G) ≤ ∆(G)2.
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Figure 1: An
L(2, 1)-labeling

of Petersen Graph
with span 9.

Since Griggs and Yeh’s seminal work, λ(G) has been determined
for various families of graphs [2, 3, 4]. In particular, Georges and
Mauro [2] verified Griggs and Yeh’s conjecture for some families of
3-regular graphs and, based on their results, posed Conjecture 1.

Conjecture 1. With the exception of the Petersen Graph, every
connected 3-regular graph G has λ(G) ≤ 7.

In this work, we verify Conjecture 1 for a family of Loupekine snarks
called LP1-snarks and present a lower bound on λ(G) for its members.

Loupekine Snarks

A snark is a simple, connected, bridgeless 3-regular graph such that
its edges cannot be colored with only three colors such that every
two adjacent edges are assigned distinct colors. Snarks are related to
fundamental problems in graph theory such as the 4-Color Problem
and the 5-Flow Conjecture.

Loupekine snarks were originally defined by Loupekine and first pre-
sented by Isaacs [1]. LP1-snarks are an infinite family of Loupekine
snarks and their construction is presented below.
Let k be an odd positive integer. A k-LP1-snarkG is
constructed from k ≥ 3 subgraphs called blocks, ob-
tained from the Petersen graph P as follows: given
k copies R0, . . . , Rk−1 of P , block Bi is obtained
from Ri by deleting the vertices of an arbitrary path
P3 ⊂ Ri, for 0 ≤ i ≤ k − 1. Figure 2 illustrates an
arbitrary block Bi with its vertices named. Vertices
xi, ui, wi, vi, yi are called border vertices.
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Figure 2: Block Bi.

For all i ∈ {0, . . . , k − 1}, the border vertices vi and yi of block Bi

are linked to the border vertices ui+1 and xi+1 of block Bi+1 (indices
taken modulo k) by edges called linking edges. The linking edges
can be {vixi+1, yiui+1} or {viui+1, yixi+1}, but not both.
Any three distinct border vertices wi, wj, w` are linked to a new vertex
ui,j,`, called star vertex, by adding ui,j,` and three new edges wiuij`,
wjuij` and w`uij` to G. The previous operation can be done an odd
number q of times, with 1 ≤ q ≤ k. Since k is odd, an even number
k − q of border vertices remain. If k − q > 0, the remaining border
vertices are paired up and each pair wi and wj is linked by a new edge
wiwj, thus concluding the construction of a k-LP1-snark. Figure 3
shows a 3-LP1-snark with an L(2, 1)-labeling with span 7.

Results

Theorem 1. Every LP1-snark G has λ(G) ≤ 7.

Sketch of the proof. Given a k-LP1-snarkG, we construct an L(2, 1)-
labeling f of G with span 7. Initially, choose a block Bi such that its
border vertex wi is adjacent to another border vertex wj of G. Name
this block by Bk−1 and name the remaining blocks consecutively from
this one. If there is no such block, start the enumeration from any
block. For every i ∈ {0, . . . , k − 1}, label the vertices of block
Bi as follows: f (ui) = f (xi) = 2 · (2i mod 3), f (vi) = f (yi) =
2 · (2i + 1 mod 3), f (ri) = 6 and f (ti) = 7. Conflicts occur in this
partial labeling when k 6≡ 0 (mod 3) and, in order to resolve them,
some vertex labels in Bk−1 are changed.
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Figure 3: L(2, 1)-labeling of a 3-LP1-snark with span 7.

If k ≡ 1 (mod 3), define f (uk−1) = f (xk−1) = 1 and f (vk−1) =
f (yk−1) = 3. If k ≡ 2 (mod 3), define f (uk−1) = f (xk−1) = 5,
f (vk−1) = f (yk−1) = 3 and f (rk−1) = 1. Other conflicts can occur
depending on the adjacencies of the star vertices. All of them are
resolved so that we finally verify that a valid label can always be
assigned for every remaining unlabeled vertex without conflict.

Theorem 2. Every LP1-snark G has λ(G) ≥ 6.

Sketch of the proof. It follows from L(2, 1)-labeling’s definition and
G being 3-regular that λ(G) ≥ 5. If λ(Bi) ≥ 6, then λ(G) ≥ 6
since Bi ⊂ G. We suppose that λ(Bi) = 5. Then, we prove that this
assumption restricts to 1 and 4 the labels that a border vertex wi can
have. This restriction leads to a contradiction. Thus, λ(Bi) ≥ 6.
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Introduction

In information theory, there is a common trade-off that arises in data trans-
mission processes, in which two goals are usually tackled independently: data
compression and preparation for error detection. While data compression
shrinks the message as much as possible, data preparation for error detection
adds redundancy to messages so that a receiver can detect, or fix, corrupted
ones. Data compression can be achieved using different strategies, often de-
pending on the type of data being compressed. One of the most traditional
methods is the method of Huffman [1], that uses ordered trees, known as
Huffman trees, to encode the symbols of a given message. In 1980, Ham-
ming proposed the union of both compression and error detection through a
data structure called Hamming-Huffman tree [2], which extends the Huffman
tree by allowing the detection of any 1-bit transmission error. Determining
optimal Hamming-Huffman trees is still an open problem.

Contribution
In this work, we describe an algorithm to determine optimal two level
Hamming-Huffman trees when the symbols have uniform frequencies.
That is, the algorithm builds optimal Hamming-Huffman trees in which
all leaves lay in at most two different levels. Also, considering experimen-
tal results, we conjecture that, for uniform frequencies, optimal two levels
Hamming-Huffman trees are optimal in general.

Hamming-Huffman Trees

A Huffman tree (HT) T is a rooted strict binary tree in which each edge
(u, v), v being a left (resp. right) child of u, is labeled by 0 (resp. 1) and
there is a one-to-one mapping between the set of leaves of T and the set Σ
of symbols of the message M to be sent. Given T , each symbol a of M is
encoded into a binary string c(a). Such encoding is obtained by the directed
path from the root of T to the leaf corresponding to a. Over all possible trees,
the HT for M is a tree in which its cost, defined as the sum of p(a)|c(a)| over
all a ∈ Σ, is minimized, where p(a) stands for the probability of occurrence
of a and |c(a)| is the length of the string c(a).
A Hamming-Huffman tree (HHT) T is an extension of the HT in which,
for each leaf labeled with a ∈ Σ, there exist leaves e1, . . . , ek with k = |c(a)|
such that each c(ei), 1 ≤ i ≤ k, differs from c(a) in exactly one position. The
leaves e1, . . . , ek are called error leaves of a. When c(e) is identified during
the decoding process, where e is an error leaf, it means that a transmission
error is detected. The cost of HHT’s is defined exactly in the same way as
the cost of HTs. We define an HHT as optimal if its cost is minimum.
Figure 1 depicts an HT with cost 2.4 and an optimal HHT with cost 3.8,
both having 5 symbols with uniform frequencies, that is, symbols with a
same probability of occurrence.

(a) (b)

Figure 1: Examples of (a) Huffman and (b) optimal Hamming-Huffman trees, for 5 symbols
with uniform frequencies. White (resp. black) leaves represent symbol (resp. error) leaves.

Hamming-Huffman trees with leaves in two levels

Consider the problem of finding an optimal HHT for ` uniform-frequency
symbols such that these symbols are placed on at most two levels. We will
describe an efficient algorithm for this problem. There is a one-to-one map-
ping between the leaves of a full binary HHT having height n and the vertices
of an hypercube Qn, in which a leaf a corresponds to c(a) ∈ V (Qn). The
problem of finding the minimum number of error leaves in a full binary HHT
T , of height n with ` symbol leaves, is equivalent to that of finding one that
minimizes |N(L)|, over all independent sets L of cardinality ` in n-cubes.
Define ϕ(`, n) as this minimum value.
Concerning an optimal HHT with leaves on two levels h1 < h2, consider
that there are `1 symbol leaves on level h1, for some 1 ≤ h1 ≤ dlog `e + 1
and 1 ≤ `1 ≤ min{`, 2h1−1}. Therefore, the minimum number of er-
ror leaves is ϕ(`1, h1) and thus r(`1, h1) = 2h1 − (`1 + ϕ(`1, h1)) is the
number of leaves that neither are symbol nor error leaves. The remaining
`2 = ` − `1 symbols are distributed among the subtrees rooted at these
r(`1, h1) leaves. To accomplish this, each subtree is required to have pre-
cisely height h′(`1, h1) = dlog `2

r(`1,h1)e + 1. The strategy is to choose among
all the possible trees, one that has minimum cost. Given h1, `1 and `, the
cost of each tree is given by

T (h1, `1, `) =





`h1, if ` = `1
+∞, if r(`1, h1) = 0 and ` > `1
`h1 + `2h

′(`1, h1), otherwise.
The cost of an optimal tree for ` symbols can be obtained by

min{T (h1, `1, `) : 1 ≤ h1 ≤ dlog `e + 1 , 1 ≤ `1 ≤ min{`, 2h1−1}}

Concerning the complexity, for each h1, there are at most 2h1−1 possible values
for `1. Therefore, there are at most 1 + 2 + 22 + . . . + 2dlog `e = Θ(`) distinct
pairs of values h1, `1 to be computed for T . Moreover, for each computation
of T (h1, `1, `), the evaluation of ϕ(`1, h1) is required, which can be done in
time O(h2

1) [3]. So, the complexity of the method is O(` log2 `). Figure 2
depicts this strategy. Nodes with “s” represent symbol leaves, black nodes
represent the error leaves, and dashed nodes represent the free leaves.

Figure 2: Hamming-Huffman tree with leaves on two levels h1 and h2.

Regarding general Hamming-Huffman trees

We have implemented two algorithms. The first one is a backtracking that
finds an optimal Hamming-Huffman tree. The second one is a dynamic pro-
gramming algorithm that evaluates a lower bound for the cost of an optimal
Hamming-Huffman tree. Both consider ` symbols with uniform frequencies.
With respect to the backtracking, we have tested all values of 1 ≤ ` ≤ 38,
concluding that there is always an optimal Hamming-Huffman tree with at
most two levels. Concerning the dynamic programming algorithm, we have
tested all values of 1 ≤ ` ≤ 400. We have verified that, for some cases, the
lower bound was equal to the cost of the corresponding optimal two level
HHT’s.
Considering the results of the experiments, we believe that optimal HHT’s for
symbols with uniform frequencies indeed have leaves on at most two levels,
as formalized in the following conjecture.

Conjecture
Let Σ be a set of symbols having a same frequency. There exists an
optimal Hamming-Huffman tree associated with Σ in which all leaves are
on at most two levels.
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1. Introduction

A graph is a mathematical model used to represent relationships between ob-
jects. The general characters that both of these objects and their relationships
can assume, allowed the construction of the so-called Graph Theory, which
has been applied to model problems in several areas, such as Mathematics,
Physics, Computer Science, Engineering, Chemistry, Psychology and industry.
Most of them are large scale problems.
Fullerene graphs are mathematical models for carbon-based molecules experi-
mentally discovered in the early 1980s by Kroto, Heath, O’Brien, Curl and Smal-
ley. Many parameters associated with these graphs have been discussed to
describe the stability of fullerene molecules.
By definition, fullerene graphs are cubic, planar, 3-connected with pentagonal
and hexagonal faces.
The motivation of the present study is to find an efficient method to obtain a
4-total coloring of a particular class of fullerene graphs named fullerene nan-
odiscs, if it exists.

2. Basic Concepts of Graph Theory

This section is based on the reference Bondy and Murty, 2008.

Definition 1. A graph G = (V (G), E(G)) is an ordered pair, where V (G) is a
nonempty finite set of vertices and E(G) is a set of edges disjoint from V (G),
formed by unordered pairs of distinct elements from V (G), that is, for every
edge e ∈ E(G) there is u and v ∈ V (G) such that e = {u, v}, or simply e = uv.

If uv ∈ E, we say that u and v are adjacent or that u is a neighbor of v, and that
the edge e is incident to u and v, and u and v are said to be extremes (or ends)
of e. Two edges that have the same end are called adjacent.
The degree of a vertex v in G, represented by d(v), is the number of edges in-
cident to v. We denote by δ(G) and ∆(G) the minimum and maximum degrees
respectively, of the vertices of the graph G.

A graph G is said connected when there is a path between each pair of ver-
tices of G. Otherwise, the graph is called disconnected.

A cubic graph is one in which all
vertices have three incident edges
and in this case, all vertices have de-
gree 3. Cubic graphs play a funda-
mental role in Graph Theory.

Figure 1: Cubic Graph.

A graph G is planar if there is a representation of G in the plane so that the
edges meet only at the vertices, that is, the edges do not cross. Such a rep-
resentation of G is said to be embeddable or planar. A planar representation
divides the plane into regions called faces. There is always a single face called
external or infinite, which is not limited (has infinite area). The outer bound-
ary or cycle of a connected planar graph face is a closed walk that limits and
determines the face.

Two faces are adjacent if they have a
common edge between their bound-
aries. We denote the boundary of
f by ∂(f ). If f is any face, the de-
gree of f , denoted by d(f ), is the
number of edges contained in the
closed walk that defines it. In a pla-
nar connected graph with f faces, n
vertices and m edges, we have that
n + f − m = 2, which is known as
Euler’s formula.

Figure 2: Planar Graph.

2.1 Total Coloring
In graph theory, coloring is a color assignment to the graph elements, subject to
certain restrictions. The coloring study started with the Four Color Conjecture,
which deals with determining the minimum number of colors needed to color
a map of real or imaginary countries, so that countries with common borders
have different colors. This conjecture was proposed by Francis Guthrie in 1852.
After 124 years, the Four Color Conjecture was demonstrated by Kenneth Ap-
pel and Wolfgang Haken with the help of a computer. The famous Four Color
Theorem is a reference in the area of Graph Theory.

Definition 2. A total coloring CT of a graph G is a color assignment to the
set E ∪ V in a color set C = {c1, c2, ..., ck}, k ∈ N, such that distinct colors are
assigned to:

• Every pair of vertices that are adjacent;

• All edges that are adjacent;

• Each vertex and its incident edges.

A k-total coloring of a graph G is a
total coloring of G that uses a set of
k colors, and a graph is k-total col-
orable if there is a k-total coloring of
G. We define as the total chromatic
number of a graph G the smallest
natural k for which G admits a k-total
coloring, and is denoted by χ′′(G). Figure 3: Graph with 4-total coloring.

Behzad and Vizing independently conjectured the same upper bound for the
total chromatic number.

Conjecture (Total Color Conjecture (TCC))
For every simple graph G,

χ′′(G) ≤ ∆(G) + 2.

The TCC is an open problem, but has been checked for several classes of
graphs. Knowing that χ′′(G) ≥ ∆(G) + 1, and from the TCC, we have the
following classification: If χ′′(G) = ∆(G) + 1, the graph is Type 1; and if
χ′′(G) = ∆(G) + 2, the graph is Type 2.
For cubic graphs, the TCC has already been demonstrated, which indicates
that these graphs have total chromatic number 4 (∆ + 1) or 5 (∆ + 2). However,
the problem of deciding which are Type 1 or Type 2 is difficult.

3. Fullerene Graphs

3.1 Fullerene: A small history
In 1985 a new carbon allotrope was reported in the scientific community: C60.
A group of scientists, led by Englishman Harold Walter Kroto and Americans
Richard Errett Smalley and Robert Curl, trying to understand the mechanisms
for building long carbon chains observed in interstellar space, discovered a

highly symmetrical, stable molecule, composed of 60 carbon atoms different
from all the other carbon allotropes.

The C60 has a structure similar to
a soccer hollow ball (Figure 4),
with 32 faces, being 20 hexago-
nal and 12 pentagonal. They de-
cided to name the C60 buckminster-
fullerene, in honor of American ar-
chitect Richard Buckminster Fuller,
famous for his geodesic dome con-
structions, which were composed of
hexagonal and pentagonal faces.
At the end of the 1980s, other carbon
allotrope molecules with similar spa-
tial structure to the C60 were reported
called fullerene molecules (Kroto et
al., 1985).

Figure 4: Molecular structure of C60.

The buckminsterfullerene was the first new allotropic form discovered in the
20th century, and earned Kroto, Curl and Smalley the Nobel Prize in Chem-
istry in 1996. Nowadays fullerene molecules are widely studied by different
branches of science, from medicine to mathematics. These molecules are sup-
posed to contribute to transport chemotherapy, antibiotics or antioxidant agents
and released in contact with deficient cells.

3.2 Fullerene Graphs

Each fullerene molecule can be de-
scribed by a graph where the atoms
and the bonds are represented by
the vertices and edges of the graph,
respectively. In addition, fullerene
graphs preserve the geometric prop-
erties of fullerene molecules, i.e.,
fullerene graphs are planar and con-
nected. Moreover, all vertices have
exactly 3 incident edges and all
faces are pentagonal or hexagonal
(Nicodemos, 2017). Figure 5: Fullerene Graph.

3.3 Fullerene Nanodiscs
The fullerene nanodiscs, or nanodiscs of radius r ≥ 2 are structures composed
of two identical flat covers connected by a strip along their borders. While in
the nanodisc lids there are only hexagonal faces, in the connecting strip, 12
pentagonal faces are arranged side by side.
A nanodisc of radius r ≥ 2, represented by Dr,t, can be obtained through its flat-
tening. The idea is to arrange the faces in layers around the nearest previous
layer starting from a hexagonal face (Nicodemos, 2017).

The sequence

{1, 6, 12, 18, ..., 6(r − 1), 6r, 6(r − 1), ..., 18, 12, 6, 1}

provides the amount of faces on each layer of
nanodisc planning Dr, while r ≥ 2. In ad-
dition, this sequence states that a Dr nan-
odisc has (6r2 + 2) faces, 12r2 vertices and
(2r + 1) layers. The 12 pentagonal faces will
always be distributed in the same layer with
other (6r − 12) hexagonal faces. This is the
key property of fullerene nanodiscs. Figure 6: Nanodisc D2.

4. Goals

To prove that a cubic graph is Type 1, it suffices to show a total coloring with 4
colors. However, to demonstrate that a cubic graph is Type 2, we need to show
that it has no total coloring with only 4 colors. Thus, finding Type 2 cubic graphs
is more complicated.
We define the girth of a graph G as the length of its shortest cycle. Until now,
every Type 2 cubic graph we know has squares or triangles. So, we could think
that there are no Type 2 cubic graphs with girth at least 5. Thus, we investigate
the following question.

Question
(Sasaki, 2013) Does there exist a Type 2 cubic graph with girth at least 5?

Motivated by this question, we analyze the family of fullerene nanodiscs, in
search of evidences that can positively or negatively contribute to this question.
In this context, we look for an efficient algorithm to find a 4-total coloring of the
fullerene nanodisc, if this coloring exists.

5. Results

After a few attempts using the brute force
method, we were able to obtain a 4-total col-
oring of the D2 nanodisc, with r = 2. There-
fore, D2 is Type 1, which contributes to the
evidences that the previously proposed ques-
tion has a negative answer.

Figure 7: A 4-total coloring of D2.

6. Conclusion

We will continue the study of total coloring of nanodiscs, looking for an algo-
rithm that gives a total coloring of the graphs of the infinite family of fullerene
nanodiscs, also seeking to answer the question previously proposed.
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This work aims at presenting the uniformly clique-expanded graphs and its

results on global defensive alliance and total dominating set problems. Those graphs

are related to Sierpiński graphs [5] and subdivided-line graphs [1]. We show the

minimum cardinality of the global defensive alliance for some particular situations

of uniformly clique-expanded graphs, and we also relate that cardinality to the total

dominating set number for graphs having a path or cycle as the root.

Introduction

Acknowledgment

The uniformly clique-expanded graphs are particular cases of line graphs of

bipartite graphs since we can verify that they are (claw,diamond,odd-hole)-free.

Thus, we presented preliminary results that somehow are important to the well-

known superclass.

Theorem 1: Let 𝐻 be a uniformly clique-expanded graph from a root 𝐺 and a clique

𝐾𝑛. If 𝑛 is even and ∆(𝐺) ≤
𝑛

2
, then 𝛾𝑎 𝐻 =

𝑛

2
𝑉(𝐺) .

Theorem 2: Let 𝐻 be a uniformly clique-expanded graph from a root 𝐺 and a clique

𝐾𝑛. If 𝑛 is odd and ∆(𝐺) ≤
𝑛−1

2
, then:𝛾𝑎 𝐻 = σ

𝑑 𝑣 <
𝑛−1

2

𝑛+1

2
+ σ

𝑑 𝑣 =
𝑛−1

2

𝑛−1

2
, for

all 𝑢 ∈ 𝑉(𝐺), where 𝑑(𝑢) is the degree of 𝑣 in 𝐺.

Now, the next theorem arises from properties in [2,3,4].

Theorem 3: Let 𝐻 be a uniformly clique-expanded graph from a root 𝐺 ∈ {𝑃𝑞, 𝐶𝑞},

𝑞 ≥ 2, and a clique 𝐾𝑛. We have 𝛾𝑡 𝐻 = 𝑞 + 𝑞 mod 2, and if:

i. 𝐺 is a cycle and:

a. 2 ≤ 𝑛 ≤ 3, then 𝛾𝑎 𝐻 = 𝛾𝑡 𝐻 ;

b. 4 ≤ 𝑛 ≤ 5, then 𝛾𝑎 𝐻 = 𝑛

2
𝑞;

c. 𝑛 ≥ 6, then 𝛾𝑎 𝐻 = 𝑛

2
𝑞.

ii. 𝐺 is a path and:

a. 𝑛 = 2, then 𝛾𝑎 𝐻 = 𝛾𝑡 𝐻 − 1 whether 𝑝 ≡ 1(mod 2) or 𝛾𝑎 𝐻 = 𝛾𝑡 𝐻
otherwise;

b. 𝑛 = 3, then, 𝛾𝑎 𝐻 = 𝛾𝑡 𝐻 ;

c. 𝑛 = 4, then 𝛾𝑎 𝐻 =
𝑛

2
𝑞.

d. 𝑛 = 5, then 𝛾𝑎 𝐻 =
𝑛−1

2
𝑞.

e. 𝑛 ≥ 6, then 𝛾𝑎 𝐻 = 𝑛

2
𝑞.

We say that a graph 𝐻 is a uniformly clique-expanded graph if there exist a

graph 𝐺 and a clique 𝐾𝑛 with 𝑛 ≥ ∆(𝐺) (maximum degree of 𝐺) satisfying: (1)

𝑉(𝐻) consists of vertices from 𝐾𝑛
𝑣, which is a copy of the clique 𝐾𝑛, for each vertex

𝑣 of 𝐺, and (2) 𝐸(𝐻) contains edges of all clique copies, and every edge (𝑢)(𝑣)
linking a vertex (𝑢) ∈ 𝐾𝑛

𝑢 to some (𝑣) ∈ 𝐾𝑛
𝑣 since 𝑢𝑣 ∈ 𝐸 𝐺 and no edges coincide

end-vertices in 𝐻 besides the ones inside of cliques. 𝐺 is the so-called root of 𝐻. See

an example in Figure 1.

Figure 1: The graph 𝑯 can be obtained from the root 𝐺 and the clique 𝐾4, and so it is a uniformly clique-

expanded graph.

Results

Basic Definitions

The Main Definition & an Example

Conclusions & Remarks

References

Consider 𝐺 = (𝑉, 𝐸) a finite, simple, and undirected graph. We write 𝑃𝑛, C𝑛,

and 𝐾𝑛 for a path, cycle, and clique of the order 𝑛, resp. For the closed (resp. open)

neighborhood of a vertex 𝑣 ∈ 𝑉, we denote it by 𝑁[𝑣] (resp. 𝑁(𝑣)). Analogously,

we use 𝑁[𝑆] (resp. 𝑁(𝑆)) for the closed (resp. open) neighborhood of a vertex subset

𝑆 ⊆ 𝑉. A vertex subset 𝑆 ⊆ 𝑉 is said a dominating set if 𝑁 𝑆 = 𝑉. Moreover, we

call the subset 𝑆 by total dominating set only for 𝑁(𝑆) = 𝑉. Now, 𝑆 is a defensive

alliance if it satisfies 𝑁[𝑣] ∩ 𝑆 ≥ 𝑁 𝑣 ∩ Τ𝑉 𝑆 for every 𝑣 ∈ 𝑆. When 𝑆 is both

a defensive alliance and a dominating set, we say 𝑆 is a global defensive alliance.

We denote 𝛾𝑡(𝐺) (and 𝛾𝑎(𝐺)) as the minimum cardinality of a total dominating set

(and global defensive alliance) of 𝐺.
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The annihilation number is a graph invariant used as a sharpupper bound for the independence number. In this poster, wepresent bounds and Nordhaus-Gaddum type inequalities for theannihilation number.
We also investigate the extremal behavior of the invariant andshowed that both parameters satisfy the interval property. Inaddition, we characterize some extremal graphs, ensuring thatthe bounds obtained are the best possible.

INTRODUCTION

The independence number of a graph is the cardinality of alargest set of mutually non-adjacent vertices. It is not alwayspossible to determine the number of independence of a graph,since this is a well-known widely-studied NP-hard problem, andfor this reason the approximation of the independence numberthrough inequalities represents a relevant research topic.
The annihilation number is a polynomial time computableupper bound for the independence number introduced by R.Pepper and S. Fajtlowicz [1,2].

The annihilation number of G, denoted by a(G), can be definedas the largest integer k such that the sum of the smallest kdegrees of graph G was at most its number of edges e(G), thatis
a(G) = max


k ∈ N :

k∑
i=1
di ≤ e(G)


 ,

where di is the i-th smallest degree of G.

Definition

The annihilation number and the independence number are usedto investigate the relationship between the reactivity of an or-ganic molecule, represented by a graph, and its independencenumber. More precisely, the research states that, for a fixednumber of vertices, molecules with a lower independence num-ber are, in general, less reactive than molecules with a greaterindependence number. This study is known in organic chemistryas the independence-stability hypothesis [2].

ANNIHILATION NUMBER

Acknowledgment:Acknowledgment:

The Nordhaus-Gaddum problem is related to find lower andupper bounds on the sum and the product of the invariant of agraph and its complement, denoted by Gc [3].
The Nordhaus-Gaddum problem was studied for several domi-nation parameters associated with the annihilation number, suchas the independence number, the domination number, the Romandomination number, the total domination number, among others.This establishes a valuable connection between the annihilationnumber and the Nordhaus-Gaddum problem.

NORDHAUS-GADDUM PROBLEM

Let G be a collection of graphs and ξ : G → R be a graphparameter defined on G. We say that ξ has the interval propertyon G if ξ(G) = I ∩ Z, for some interval I ⊂ R [4].
In other words, a graph parameter satisfies the interval pro-perty if each integer value in an interval is realized by at leastone graph. The interval property generalizes the behavior of aparameter in an interval making it a relevant research topic.

INTERVAL PROPERTY

We present bounds for the annihilation number of a graph andprove that those bounds are the best possible. To state theresult, we denote by Kn the complete graph on n vertices.

Let G be a graph of order n. Then⌊n
2
⌋ ≤ a(G) ≤ n.

Equality holds in the upper bound if and only if G is isomorphicto nK1.If G is a non-empty k-regular graph then the equality holdsin the lower bound.

Theorem

As a consequence, we show that the annihilation numbersatisfies the interval property.

Let n and k be integers such that ⌊n2
⌋+ 1 ≤ k ≤ n− 1.If G is isomorphic to

(n− k)K2 ∪ (2k − n)K1,
then a(G) = k .

Interval Property for a(G)

BOUNDS FOR ANNIHILATION NUMBER

We present Nordhaus-Gaddum inequalities associated with theannihilation number and ensure that they are the best possible.To state the result, we denote by Sn the star graph on n vertices.

Let G be a graph of order n. Then
2 ⌊n2

⌋ ≤ a(G) + a(Gc) ≤ n+ ⌊n2
⌋.

For n even, the equality holds in the upper bound if and onlyif G or Gc is isomorphic to nK1.For n odd, the equality holds in the upper bound if and onlyif G or Gc is isomorphic to nK1 or Sdn+1 ∪ (n − dn − 1)K1, for⌊n2
⌋ ≤ dn ≤ n− 1.If G and Gc are non-empty graphs and G is a k-regular graphthen the equality holds in the lower bound.

Theorem

We then show that a(G) + a(Gc) satisfies the interval property.

Let n and k be integers such that 2 ⌊n2
⌋+ 1 ≤ k ≤ n+ ⌊n2

⌋− 1.If G is isomorphic to(n+ ⌊n2
⌋− k)K2 ∪

(2k − 2 ⌊n2
⌋− n)K1,

then a(G) + a(Gc) = k .

Interval Property for a(G) + a(Gc)

NORDHAUS-GADDUM FOR a(G)

We obtained important structural information about thegraphs that satisfy the equality in the upper bounds. In particu-lar, we can observe that, in general, such graphs have few edges.
The lower bounds are satisfied by a large number of graphs and,consequently, their characterization is important for understan-ding the extremal behavior of the annihilation number.

CONCLUSION
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espacio

Dados un grafo G con conjunto de vértices V (G) y k ∈ N,
k ≤ min {d(v) : v ∈ V (G)}+ 1, D ⊆ V (G) es un
conjunto k-upla dominante en G si

|N [v] ∩D| ≥ k ∀v ∈ V (G).

N [v] : vecindad cerrada del vértice v

v1

v4

v3

v5
v2 v1

v4

v3

v5
v2

k = 2
D = {v3, v4} D = {v1, v3, v5}

Problema de la k-upla dominación (PkUD), k ∈ N fijo
Dado G, el problema consiste en hallar

γ×k(G) = min {|D| : D es conjunto k-upla dominante en G}
[Harary & Haynes, 2000].

NP-Completo, aún en grafos cordales [Liao & Chang, 2003].

P1UD, lineal en grafos arco-circulares [Hsu & Tsai, 1991].

Complejidad no conocida de PkUD en grafos arco-circulares para k ≥ 2.

Una subclase de grafos arco-circulares:

Grafo web: Wm
n n,m ∈ N m ≥ 1, n ≥ 2m+ 1.

V (Wm
n ) = {v1, v2, · · · , vn}.

E(Wm
n ) = {vivj : j ≡ i± l (mod n) , l ∈ {1, · · · ,m} } .

1

 
7

 
10
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11

 
9  

8

 
3
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13

 
14

 
 15 v

v

v
v

v
v

v

v

v

v
v v 

 
4
v

 
5v

 
6v

W 4
15

PkUD en grafos web Wm
n : Antecedentes

Teorema [Argiroffo, Escalante & Ugarte, 2010]

n,m ∈ N : n = c(2m+ 1) + r, c ∈ N, 0 ≤ r ≤ 2m.

γ×2(Wm
n ) =





2c, r = 0
2c+ 1, 0 < r ≤ m
2c+ 2, m+ 1 ≤ r ≤ 2m.

k

⌊
n

2m+ 1

⌋
≤ γ×k(Wm

n ) ≤ k
⌈

n

2m+ 1

⌉
, ∀ k ≤ 2m.

Teorema [Dobson, Leoni & Lopez Pujato, 2019]

n,m ∈ N : n = c(2m+ 1) + r, c ∈ N, 0 ≤ r ≤ 2m.

γ×k(Wm
n ) =

⌈
kn

2m+ 1

⌉
, ∀ k ≤ 2m+ 1.

Objetivo: Dado Wm
n , presentar un algoritmo que devuelve un

conjunto k-upla dominante en Wm
n de tamaño γ×k(Wm

n ).

Notación:
n,m ∈ N : n = c(2m+ 1) + r, c ∈ N, 0 ≤ r ≤ 2m,
M := mcd (2m+ 1, r) , [1, x]N := {z ∈ N : 1 ≤ z ≤ x} .
• Para cada i ∈ [1,M ]N :

[i]M → clase de equivalencia de i módulo M,

Si := [i]M ∩ [1, n]N.

Lema
{Si}Mi=1 es una partición de [1, n]N .

|Si| =
n

M
∀ i ∈ [1,M ]N .

Identificamos:

j ∈ Si↔ vm+j ∈ V (Wm
n ) (suma mod n en los sub́ındices, en [1, n]).

Corolario

{Si}Mi=1 es una partición de V (Wm
n ) en conjuntos de tamaño

n

M
.

Ejemplo sobre V (W 4
15) :

2m+ 1 = 9, r = 6 , mcd(9, 6) = 3 = M .

S1 = [1]3 ∩ [1, 15]N = {1, 4, 7, 10, 13}
S2 = [2]3 ∩ [1, 15]N = {2, 5, 8, 11, 14}
S3 = [3]3 ∩ [1, 15]N = {3, 6, 9, 12, 15}
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Propiedades de los conjuntos de la partición de V (Wm
n ):

Proposición 1:
Dado Wm

n , para cada v ∈ V (Wm
n ) y cada i ∈ [1,M ]N se tiene

|N [v] ∩ Si| = l, i.e. Si es conjunto l-upla dominante de Wm
n ,

donde 2m+ 1 = lM , l ∈ N.

Proposición 2:
Dados Wm

n y l ∈ N tal que 2m+ 1 = lM , se tiene

γ×l(Wm
n ) =

n

M
.

Proposición 3:
Para cada i ∈ [1,M ]N se tiene

Si =
⋃

t∈[0, n/M−1]N
{w ∈ [1, n] : w ≡ i+ t(2m+ 1) (mod n)} .

Definición: para i, j ∈ V (Wm
n ), j es 1-contiguo a i si

j ≡ i+ 2m+ 1 (mod n).

La 1-contiguidad induce en cada Si un ordenamiento tal que,
empezando por i, cada vértice se obtiene del anterior, como un
((movimiento circular)) de 2m+ 1 posiciones.

Procedimiento PROC(n,m,i)→ devuelve 〈Si〉 (Si con el
ordenamiento).

Procedimiento DOM (n, m, 〈Sj〉, α)→ devuelve un conjunto α-upla dominante en
Wm

n donde α ∈ N, α ≤ l y 2m+ 1 = lM .
t = 0 ....(indica cuál fue el último elemento incorporado a D según 〈Sj〉).

h = 1
DIV (n, 2m+ 1) ....(obtiene el resto r de la división entera).

M = mcd(2m+ 1, r)
D = ∅
mientras h ≤ α ∧ i ≤ n

M
....(h indica que D será un conjunto h-upla dominante en Wm

n ).

espacio i = t+ 1 ....(indica cuál será el próximo elemento a incorporar a D según 〈Sj〉).

espacio mientras sji + 2m < n ∧ i ≤ n

M
espacio D = D ∪ {sji}
espacio i = i+ 1. Fin

espacio D = D ∪ {sji}
espacio h = h+ 1
espacio t = i. Fin

Fin Procedimiento

ALGORITMO: Conjunto k-upla dominante ḿınimo en Wm
n (k-fijo)

Entrada: n ∈ N, m ∈ N con n ≥ 2m+ 1.

Salida: Un conjunto k-upla dominante ḿınimo D en Wm
n .

1: DIV(n, 2m+ 1) y obtener resto r.

2: M := mcd(2m+ 1, r).

3: DIV(2m+ 1,M) y obtener cociente l.

4: PROC(n,m, 1) y obtener 〈S1〉.
5: Si k ≤ l luego D =DOM(n, m, 〈S1〉, k).

sino (k > l) hacer DIV(k, l) y obtener cociente c̃ y resto r̃.

D= DOM(n,m, 〈S1〉, r̃) ∪ PROC(n,m, 2) ∪ · · · ∪ PROC(n,m, c̃+ 1).

D = DOM(n,m, 〈S1〉 , r̃) ∪
c̃+1⋃

i=2

Si.

ALGORITMO LINEAL.

Aplicando el algoritmo en W 4
15
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γ×k(W 4
15) D

γ×1(W 4
15) = 2 {v5, v14}

γ×2(W 4
15) = 4 {v5, v14, v8, v2}

γ×3(W 4
15) = 5 {v5, v14, v8, v2, v11}

γ×4(W 4
15) = 7 {v5, v14, v8, v2, v11, v6, v15}

γ×5(W 4
15) = 9 {v5, v14, v8, v2, v11, v6, v15, v9, v3}

γ×6(W 4
15) = 10 {v5, v14, v8, v2, v11, v6, v15, v9, v3, v12}

γ×7(W 4
15) = 12 {v5, v14, v8, v2, v11, v6, v15, v9, v3, v12, v7, v1}

γ×8(W 4
15) = 14 {v5, v14, v8, v2, v11, v6, v15, v9, v3, v12, v7, v1, v10, v4}

γ×9(W 4
15) = 15 V (W 4

15)
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1 Introdução
As rotulações L (h,k) foram introduzidas como uma
generalização natural das rotulações L (2,1) [1], estas
conhecidas por sua importância para o problema de
atribuir canais em redes [2].

Rotulação L (h,k)

Sejam h,k ∈Z>0 e G um grafo simples. Uma rotulação
L (h,k) de G é uma função σ : V (G)→Z>0 tal que:

(i) |σ (u)− σ (v)| > h, ∀uv ∈ E(G);

(ii) |σ (u)− σ (v)| > k, ∀uw,wv ∈ E(G), u , v.

0

h

2h+ kh

h+ k

k

λh,k(
′
C3) = 2h+ k

Span λh,k

Sendo σ uma rotulaçãoL (h,k) deG:
λh,k(σ ) = max

u,v∈V (G)
{σ (u)− σ (v)} ;

e λh,k(G) = min
σ
{λh,k(σ )} .

O span foi estudado apenas em classes de grafos bási-
cas, como ciclos e caminhos [3], ou classes em con-
textos muito restritos [1, 4]. Neste trabalho, determi-
namos o span dos Sunlets

′
Cn, obtidos a partir do Cn

adicionando-se um pingente a cada vértice do ciclo.

Outras classes relacionadas que estão sob investigação
são os Caterpillars e os Multisunlets, os últimos obtidos
adicionado-se possivelmente mais de um pingente a
cada vértice do ciclo.

Financiado parcialmente por CNPq (Proc. 425340/2016-3) e CAPES.

2 O span dos Sunlets

Teorema

Sejam h,k,n ∈Z>0 tais que h > k e n > 3. Então:

λh,k(
′
Cn) =



h+ 3k se n = 5 e h < 2k;
h+ 3k se n ≡ 0 (mod 4) e h > 2k;
h+ 4k se n ≡ 2 (mod 4) e h > 3k;
2h+ k nos demais casos.

Esboço de demonstração.
(>) Por contradição, suponha que exista σ com span
menor do que o enunciado pelo teorema. Os rótulos
são particionados em três conjuntos. Por exemplo, nos
casos em que λh,k(

′
Cn) = 2h+ k,

X1 = {0,1, ...,h− k − 1} ,
X2 = {h− k,h− k + 1, ...,h+ 2k − 1} , e
X3 = {h+ 2k,h+ 2k + 1, ...,2h+ k − 1} .

Por um lado, mostramos que os rótulos dos vértices do
ciclo não podem pertencer a X2 e, por outro, que não é
possível utilizar apenas rótulos de X1 e X3 para o ciclo.

X3

?

X1

X3

X1

Caso n ≡ 1 (mod 2)

X1

?

? X3

X1

X3

Caso n ≡ 2 (mod 4) e n 6 3k

(6) Construa a rotulação por blocos pré-definidos a
partir de casos-base.

s

s
0

2h+ k

h+ k

h

k

k

⇒ 0

2h+ k

h+ k

h

k

k

0

h+ k

2h+ k

h

k

k
Caso n ≡ 0 (mod 3)

s

s
2h+ k

2h

h+ k

0

0

2h

k

2h+ k

⇒
2h+ k

2h

h+ k

0

0

2h

k

2h+ k

2h+ k

0

h+ k

k

k

h
Caso n ≡ 1 (mod 3) �
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Resumo
Neste trabalho, investiga-se a existência de em-
parelhamento perfeito no produto cartesiano
de duas árvores sem emparelhamento perfeito,
focando-se no caso de árvores do tipo caterpil-
lar. Especificamente, é descrita uma família in-
finita de caterpillars com um número par de
vértices e sem emparelhamento perfeito tais que
o produto cartesiano de duas quaisquer destas
árvores possui emparelhamento perfeito.
Palavras-chave: Produto cartesiano de grafos;
Emparelhamento perfeito. Caterpillar.

Introdução

Sejam G1, G2 grafos com conjuntos de vértices
V1 = {u1, . . . , ur} e V2 = {v1, . . . , vs}, respecti-
vamente. O produto cartesiano de G1 por
G2, denotado G1�G2, é o grafo com conjunto de
vértices V = V1 × V2, no qual (ui, vj) e (ul, vt)
são adjacentes quando ui é adjacente a ul em G1
e j = t ou i = l e vj é adjacente a vt em G2,
1 ≤ i, l ≤ r, 1 ≤ j, t ≤ s.

Um emparelhamento em um grafo G = (V, E)
é um subconjunto M do conjunto de arestas E tal
que nenhum par de elementos de M possui vér-
tice em comum. Dizemos que o emparelhamento
M satura um vértice v de G quando alguma
aresta de M que incide em v. Dizemos que M é um
emparelhamento perfeito quando M satura
todos os vértices de G. Se o grafo G com n vértices
admite emparelhamento perfeito M , então n é par
e M tem cardinalidade n/2. Um grafo que admite
um emparelhamento perfeito é chamado perfeita-
mente emparelhável.

É conhecido [1] que se G1 ou G2 é perfeitamente
emparelhável então G1�G2 também é. Em 2015,
A. R.Almeida ([2]), exibiu um grafo G sem empa-
relhamento perfeito tal que G�G possui empare-
lhamento perfeito e levanta a questão: como carac-
terizar grafos G sem emparelhamento perfeito tais
que G�G possua emparelhamento perfeito?

Dizemos que uma árvore T é do tipo caterpillar
(ou, brevemente, uma caterpillar) se ao retirar-
mos todos os vértices pendentes, resta um caminho,
chamado corpo da caterpillar .

Neste trabalho, investigamos a questão acima pro-
posta na família das caterpillars.

Uma última definição a ser usada em nosso resul-
tado é dada a seguir:

Definição.[3] Dado G = (V, E), uma partição
P = {V1, V2, · · · , Vk} de V é dita uma partição
por estrelas induzidas de G quando para
cada i, 1 ≤ i ≤ k, o subgrafo induzido G[Vi] de
G for isomorfo a uma estrela.

Figure 1:Exemplo de caterpillar.

Figure 2:Uma partição por estrelas induzidas formada por
K1,2, K1,5, K1,1, K1,1 e K1,3.

Resultados

Teorema 1 Seja C uma caterpillar que admite
uma partição por estrelas induzidas que, da es-
querda para a direita, é descrita como: uma quan-
tidade ímpar de K1,2’s cujos centros coincidem com
o corpo, seguida por um número par de K1,1’s e,
por fim, outra quantidade ímpar de K1,2’s com os
centros coincidindo com o corpo. Então o produto
cartesiano de C por K1,2 possui emparelhamento
perfeito.
Ideia da prova, com um exemplo:

Figure 3:Etapa 1.

Figure 4:Etapa 2.

Figure 5:Etapa 3.

Corolário Sejam C1 e C2 caterpillars tais como
a descrita no Teorema 1. Então C1�C2 é perfeita-
mente emparelhável.

Conclusões

Descrevemos uma família infinita de caterpillars
sem emparelhamento perfeito tais que o produto
cartesiano de qualquer par delas possui emparel-
hamento perfeito.
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Graph matching problems are well known and studied, in which we want to find sets of

pairwise non-adjacent edges[1]. This work focus on the study of matchings that induce

subgraphs with special properties [2][3]. For this work, we consider the property of being

connected, also studying it for weighted or unweighted graphs. For unweighted graphs, we

want to obtain a matching with the maximum cardinality, while, for the weighted graphs, we

look for a matching whose sum of the edge weights is maximum.

Introduction

The problem of maximum connected matching is polynomial[1]. We show ideas that lead to

two linear algorithms. One of them, having a maximum matching as input, determines a

maximum unweighted connected matching. The complexity of the maximum weighted

connected matching problem is unknown for general graphs. However, we present a linear

time algorithm that solves it for trees.
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Figure 2: Two maximum connected matchings. The left

matching refers to a unweighted while the right, to weighted.
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Theorem 2
Let 𝐺 be a connected graph and 𝑀 a maximum connected macthing of 𝐺. Then 𝑀
saturates all articulations in 𝐺

Without loss of generality, by Theorem 2, we know that, for a tree 𝑇, each articulation 𝑣 must

be saturated. We look for the neighbors of 𝑣, which maximize the weighted sum of the edges

to build a maximum connected matching in 𝑇𝑣
𝑟. For such a construction, we consider 𝑟 as any

vertex of 𝑇, and apply a dynamic programming algorithm described below. We define the sum

of the edge weights of a maximum weighted matching in 𝑇𝑣
𝑟 as 𝐵𝑣 if 𝑣 is matched with one of

its children, and 𝐵𝑣 if 𝑣 is matched with its father. We can determine this variables as follows.

If v is a leaf, then 𝐵𝑣 = 𝐵𝑣 = 0. Else, consider the following equations.

Though it is still unknown the complexity of finding maximum weighted connected

matchings, we present an idea that leads to a linear solution for trees. Let 𝑇 be a tree and 𝑟,

𝑣 ∈ 𝑉(𝑇). We denote 𝑇𝑟 as a tree 𝑇 rooted in 𝑟 and 𝑇𝑣
𝑟 as the subtree of 𝑇𝑟 rooted in 𝑣. Also,

𝑆(𝑟, 𝑣) is the set of all sons of v in 𝑇𝑣
𝑟 and 𝑤𝑒𝑖𝑔ℎ𝑡(𝑣, 𝑤) is the weight of the edge (𝑣, 𝑤).

Theorem 1
If 𝐺 is connected and 𝑀 is an unweighted maximum matching in 𝐺 , then the

unweighted maximum connected matching has cardinality |𝑀| [2]

Figure 1: Two maximum connected matchings of a graph.

For a graph 𝐺 and a matching 𝑀, we denote 𝐺[𝑀] as the subgraph induced by the vertices of

𝑀 and 𝑁(𝑣) as the set of neighbors of 𝑣 in 𝐺. Note that, in the same graph, the cardinalities of

a maximum unweighted connected matching and of a maximum weighted connected

matching are not always the same. We exemplify in Figure 1. Therefore, we expect that these

problems have different computational treatments.

We present an idea to do all this process and leave 𝐺[𝑀] connected in linear time. Let 𝑀 be a

maximum matching such that 𝐺[𝑀] is disconnected and 𝑟 a 𝑀-saturated vertex. Consider 𝐶𝑟
to be the component of 𝐺[𝑀] which contains 𝑟. We use two sets, 𝑄𝑠 and 𝑄𝑛, to store 𝑀-

saturated and 𝑀-unsaturated vertices, respectively. Additionally, we employ a set 𝐶, to which

vertices of 𝐶𝑟 or new vertices are added. A main loop can be executed until 𝐺[𝑀] equals 𝐶.

Each iteration is divided into two other auxiliary loops and includes at least one vertex at C.

The first auxiliary loop, for each vertex 𝑣 of 𝑄𝑠, analyzes 𝑁(𝑣), and properly adds to this set

each vertex of that neighborhood that has not yet entered the set. The second auxiliary loop,

for each vertex 𝑣 of 𝑄𝑛, if 𝑤 ∈ 𝑁(𝑣) \ 𝐶 exists, then 𝑤 is saturated by some edge, (𝑤, 𝑢),
and we perform the edge exchange operation in 𝑀. Such operation removes (𝑤, 𝑢) and adds

the edge (𝑣, 𝑤) to 𝑀. In the end of this process, 𝐺[𝑀] will be connected.

An algorithm can dynamically build a maximum connected matching 𝑀 as follows. From an

arbitrary articulation 𝑟 elected as root, two searches are made. The first computes the vertices

from the leaves to the root 𝑟. It obtains, for each vertex 𝑢, a child vertex 𝑠𝑢 of 𝑢 that

maximizes 𝐵𝑢. In addition, 𝐵𝑢 is calculated from the sum of 𝐵𝑤 for all its children 𝑤. The

second search is responsible for building 𝑀, computing the vertices from 𝑟 to the leaves, so

that, when a vertex 𝑢 is processed, if 𝑢 is not part of 𝑀 yet, we add (𝑠𝑢, 𝑢) to 𝑀. In the end, 𝑀
will be a maximum weighted connected matching.

The proof of Theorem 1[2] is based on the

fact that, in a graph 𝐺, if 𝑀 is a maximum

matching and 𝐺[𝑀] is disconnected, in which

𝐶 is connected component of 𝐺[𝑀], then it is

possible to redefine the edges of 𝑀 in order

to increment vertices of 𝐶 in 𝑀, successively,

until 𝐺[𝑀] has a single component.
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Introduction

Laplacian Matrix of a Graph

Definition ([1]) Let G = G(V,E) be a simple graph with n vertices.
The adjacency matrix of G is the matrix A(G) = (aij) with order n,
whose entries are given by

aij =




1, if {vi, vj} ∈ E for vi, vj ∈ V ;
0, otherwise.

Let D(G) be the diagonal matrix given by the degree of vertices of G.
The Laplacian matrix of G is the matrix L(G) defined by

L(G) = D(G)− A(G).
For example,

v1

v2

v6

v3

v5

v4
G

L(G) =




2 0 −1 0 0 −1
0 2 −1 0 0 −1
−1 −1 5 −1 −1 −1
0 0 −1 2 0 −1
0 0 −1 0 2 −1
−1 −1 −1 −1 −1 5



.

Preliminaries

Matrix-Tree Theorem

Theorem 1.1 ([3]) The number of spanning trees of a graph G with
order n is equal to any co-factor of L(G). In symbols

adj(L(G)) = τ (G)Jn×n,
where adj(L(G)) is the classical adjoint of L(G), τ (G) is the number
of spanning trees of G and Jn×n is the matrix with order n× n whose
entries are all equal to one.
We emphasize that this counting does not disregard isomorphic trees,
that is, the number of non-isomorphic spanning trees is less than or equal
to the number of spanning trees.
Corollary 1.2 ([1]) Let G be a connected graph which n vertices.
If µ1, µ2, . . . , µn−1 are all the non-zero eigenvalues of L(G), then

τ (G) = µ1µ2 . . . µn−1
n

.

This is the spectral version of the Matrix-Tree Theorem, which is very
useful, since we’ve reduced the problem of finding the number of spanning
trees in a graph to a problem of characterization of Laplacian eigenvalues.
For more reference see [4] and [5].

Matrogenic Graphs

Literature Results

The symmetric difference between two sets A,B is given by A⊕B = (A∪B)\(A∩B).
Definition. If u, v are vertices of a graph G, we say that u dominates v if
NG(v)\{u} ⊆ NG(u)\{v}. When neither u dominates v, nor v dominates u, we
say that u and v are incomparable.
Definition. A split graph is a graph in which the set of vertices can be partitioned
into a clique and an independent set. A graph is a complete split graph if it is a split
graph such every vertex in the independent set is adjacent to every vertex in the clique.
Definition. A graph G is matrogenic if and only if for any incomparable vertices,
u and v in G, we have that the cardinality of symmetric difference between the sets
NG(v)\{u} and NG(u)\{v} is 2.

Proposition 2.1 The split complete graph is matrogenic.

Theorem 2.2 ([2]) A graph G = G(V,E) is matrogenic if and only if its vertex
set V can be partitioned into three disjoint sets K, S and C such that
(i) K ∪ S induces a matrogenic split graph in which K is a clique and S is an
independent set.
(ii) C induces a crown, where a crown is either a perfect matching or a hyperoc-
tahedron or a C5.
(iii) Every vertex in C is adjacent to every vertex in K and to no vertex in S.

A Subclass of Matrogenic Graphs

From Theorem 2.2 every matrogenic graph of order n can be denoted by Gn(K ∪S,C),
where K, S and C are defined in the same theorem.
Given the non-negative integers r, s and t, we consider the class of graphs, G, constituted
by the matrogenic graphs of the form Gn(K∪S,C), where K∪S induces the complete
split graph, CS(r, s), and the subset of vertices C induces t copies of the complete
graph K2, that is,

G = {Gn(CS(r, s), tK2) | r, s, t ∈ N ∧ n = r + s + 2t}.
The figure below shows the graph G9(CS(3, 2), 2K2).

join

Application

Main Result

Theorem 3.1.
Let H = Gn(CS(r, s), tK2), then τ (H) = (r + s + 2t)r−1(r + 2)trs+t−1.

Sketch of proof. We have

L(H) =



D(tK2)− A(tK2) −J2t×r 02t×s

−Jr×2t D(K)− Jr×r + Ir×r −Jr×s
0s×2t −Js×r D(S)


,

where D(tK2) is the diagonal matrix of the induced subgraph by tK2, D(K) is
the diagonal matrix of induced subgraph by K, D(S) is the diagonal matrix of
induced subgraph by S, Ir×r is the identity matrix with order r × r and 0a×b is
the matrix with order a× b with all entries is equal to 0.
Through eigenvalue calculation techniques we obtain r ∈ Spec(L(H)) with
m(r) ≥ s − 1, when m(r) is the algebraic multiplicity of r as eigenvalue. On
other hand, r + s + 2t ∈ Spec(L(H)) with m(r + s + 2t) ≥ r − 1. In addition,
we obtain r + 2 ∈ Spec(L(H1)) with m(r + 2) ≥ t.

By a result about reduced matrices, we obtain that {r+s+2t, r, 0} ⊂ Spec(L(H)).
So, Spec(L(H)) = {(r + s + 2t)[r], (r + 2)[t], r[s+t−1], 0}.
By the Corollary 1.2, the number of spanning trees of H is

τ (H) = (r + s + 2t)r−1(r + 2)trs+t−1.

Corollary 3.2. The number of spanning trees of H depends of the cardinality
of each cell of the partition of vertices in H .
For example, if H = G9(CS(3, 2), 2K2), then τ (H) = (3 + 2 + 4)2(3 + 2)2(3)3 =
54675.
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Introduction

In this work, we investigate a conjecture by [1] that aims to characterize networks admitting k arc-disjoint s-branching
flows, generalizing a result from [2] that provides such characterization when all arcs have capacity n − 1, based on
Edmonds’ branching theorem [3].

•Network: N = (D, c), where D = (V,A) is a digraph and c : A(D)→ Z+ is the capacity function. For an integer λ ≥ 0,
we write c ≡ λ to state that c(a) = λ, ∀a ∈ A(D). For an arc a ∈ A(D) with tail u and head v, we may refer to a as uv.

•A flow f on a network N is a function f : A(D)→ Z+ such that f (a) ≤ c(a), ∀a ∈ A(D).
Two flows f1 and f2 on a network N are arc-disjoint flows if f1(a)× f2(a) = 0, ∀a ∈ A(D).

•The balance of a vertex v with respect to a flow f is balf(v) =
∑

vu∈A(D) f (vu) −∑uv∈A(D) f (uv). That is, balf(v) is the
sum of the flow leaving v minus the sum of the flow entering v.

• s-branching flow: flow f such that balf(s) = n− 1 and balf(v) = −1 for all v ∈ V (D) \ {s}.
The hardness of the problem of finding k arc-disjoint s-branching flows in a network N = (D, c) where c ≡ λ, in general,
depends on the choice of λ. Table 1 summarizes those results.

λ Hardness

λ ≥ n− ` Poly-time solvable for fixed ` [5]

(log n)1+ε ≤ λ ≤ n− (log n)1+ε No poly-time algorithm (unless ETH1fails) [1,5]

λ ≤ ` NP-complete [5]

Table 1: Summary of known hardness and algorithmic results for the problem of finding k arc-disjoint s-branching flows
in a network N = (D, c) with c ≡ λ. Here, ` is a non-negative integer, ε > 0, and n = |V (D)|.

In [1], the authors showed that the following property is a necessary condition satisfied by any network admitting k
arc-disjoint s-branching flows.

d−D(X) ≥ k ·
⌈|X|
λ

⌉
, ∀X ⊆ V (D) \ {s}. (Property 1)

They also conjectured that Property 1 is a sufficient condition for the existence of k arc-disjoint s-branching flows in a
network N = (D, c) with c ≡ λ, for any choices of k, λ, and s. In this work, we prove that their conjecture is true for
some graphs, but false in general. An out-branching with root r is a digraph where d−D(r) = 0 and d−D(v) = 1 for every
v ∈ V (D) \ {r}. Let a multi out-branching with root r be a digraph D formed by adding parallel arcs to an out-branching
with root r. Observe that the underlying simple graph of D, constructed by discarding the orientation of the edges of
D and removing parallel edges, is a tree. See Figure 1 for an example of a multi out-branching with root r and its
underlying simple graph.

r

v1 v2

v3 v4 v5 v6

v7 v8 v9

r

v1 v2

v3 v4 v5 v6

v7 v8 v9

Figure 1: Example of a multi out-branching with root r and its underlying simple graph.

Arc-disjoint branching flows on networks satisfying Property 1

We now state our results.

Theorem 1. Let N = (D, c) be a network, where D is a multi out-branching with root s and c ≡ λ. If Property 1 holds for
D with respect to k, λ and s then N admits k arc-disjoint s-branching flows.

Figure 2 shows a network satisfying Property 1 for k = λ = 2 that does not contain 2 arc-disjoint s-branching flows. This
statement is formalized by Theorem 2.

Theorem 2. Let D be the digraph shown in Figure 2 and N = (D, c) be a network with c ≡ 2. Then Property 1 holds for
N with respect to λ = 2, s,and k = 2, and there are no 2 arc-disjoint s-branching flows in N .

s
v1 v4

v2

v3

v5v6

Figure 2: A network for which Property 1 holds with respect to k = λ = 2 and the vertex s, but not containing 2 arc-disjoint
s-branching flows.

Future works

In future works, it will be interesting to consider whether there is a version of Theorem 1 for larger classes of digraphs,
or whether there is a stronger necessary and sufficient condition that applies to all cases. We remark that, by the results
shown in Table 1, we do not expect this condition to be easily verifiable in a given digraph.
In [5] the authors left open the question of whether the problem of finding k arc-disjoint s branching flows in a network
N = (D, c) with c ≡ n− ` is fixed-parameter tractable with respect to `. To our knowledge, this question remains open.
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Introduction
For a graph G we denote by α(G) the maximum size of an

independent set in G and by i(G) the minimum size of a maximal
independent set in G. The independence gap of a graph G, denoted
by µα(G) is the difference α(G) − i(G). Well-covered graphs have
independence gap zero. We present characterizations of some graphs
with independence gap at least 1 that are of girth at least 6, includ-
ing graphs with independent gap r − 1, for r ≥ 2, with r distinct
and consecutive sizes of maximal independent sets.

Finbow et al. [3] define the set Mr, for every positive integer
r, to be the set of graphs that have maximal independent sets of
exactly r different sizes. If the r different sizes of its maximal inde-
pendent sets are consecutive, then it is also a member of Ir, defined
by Barbosa and Hartnell [1].

We present results related to the number of trees with specific
maximum and minimum sizes of maximal independent sets (MIS).
For a graph G, miss(G) = {|I| : I is a MIS of G}. See Figure 1.
A vertex is said to be of type r if it is adjacent to exactly r leaves.

G1

G2 G3

Figure 1: Graph G1 is well-covered, with miss(G1) = {4}, and µα(G1) = 0;
G2 ∈ M3, but G2 /∈ I3, with miss(G2) = {2, 4, 5}, and µα(G2) = 3; G3 ∈ I3,
therefore G3 ∈ M3, with miss(G3) = {3, 4, 5}, and µα(G3) = 2.

Results
Before we show some results regarding trees, we present in

Table 1 the distribution in the set Ir of trees with n vertices, where
6 ≤ n ≤ 20. Not all trees in Mr belong to Ir. The data were
obtained via a computational program.

In Theorem 1, we show the number of non-isomorphic trees
having specific sizes of MIS and prove that there are exactly ⌈n2⌉− 1

non-isomorphic trees T with n vertices having µα(T ) = n− 4.

r

Vertices
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 2 3 6 11 23 47 106
2 2 5 4 12 14 31 40 78 122 202 351 522 1018 1370 2890
3 1 2 7 12 32 59 129 262 500 1063 1877 4069 6837 14817 24298
4 7 15 52 130 319 806 1737 4354 8812 21397 42069 98236
5 4 14 63 191 579 1654 4200 11561 27109 71181 160724
6 1 9 57 244 813 2856 7822 24781 63028 183301
7 4 55 266 1066 4206 12977 44759 125465
8 1 41 241 1206 5536 18954 72259
9 24 219 1282 6878 25945
10 10 184 1212 8079
11 3 134 1177
12 77

Table 1: Quantity of Trees of a given order in Ir.

Theorem 1

Let n ≥ 3 and T be a tree with n vertices.
1.There are exactly n− 3 trees with α(T ) = n− 2.
2.There are exactly n− 3 trees with i(T ) = 2.
3.There are exactly ⌈n2⌉ − 1 trees µα(T ) = n− 4.

Next result is a generalization of a result in [2] for graphs G
of girth at least 6 with µα(G) = 1. We adapt their proof consider-
ing µα(G) ≥ 1. Additionally, we present the different sizes of MIS
of G. Its proof gives a polynomial-time algorithm and it has some
consequences to the class Ir. In the following cases the sizes of MIS
of G are not consecutive: if r ≥ 3 and the girth of G is at least 7,
and if r ≥ 4 and the girth of G is at least 6. We summarize these
conditions in Corollary 3. We denote Gi the subgraph of G induced
by internal vertices of G that are type i.

Theorem 2

Let r ≥ 2 and G be a connected graph of girth at least 6, with
exactly two vertices u1 and u2 of type r, and with no type k ver-
tices for k ≥ r + 1. Then µα(G) = r− 1 if and only if u1 and u2
are adjacent, any other support vertex of G is type 1, and one of
the following two conditions holds:
1.V (G0) = ∅;
2.G0

∼= K2, neither of u1 and u2 has a neighbor in G0, and the
two vertices of G0 are of degree 2 in G and are contained in an
induced 6-cycle containing u1 and u2.

Moreover, if V (G0) = ∅, then miss(G) = {|V (G1)| + r +

1, |V (G1)|+2r} otherwise miss(G) = {|V (G1)|+r+2, |V (G1)|+
2r, |V (G1)| + 2r + 1}.

Proof 1: (Sketch)

Let F1 and F2 be the sets of leaves, respectively, of vertices u1 and
u2. Suppose µα(G) = r − 1. We claim that the other neighbors
of vertices u1 and u2 are vertices of type 1, and u1 and u2 are
adjacent. Suppose V (G0) ̸= ∅; Let L1 = NG(u1) − (F1 ∪ {u2})
and L2 = NG(u2) − (F2 ∪ {u1}). Let L′

i the set of leaves adja-
cent to vertices of Li, i = 1, 2. Now, let I = F1 ∪ F2 ∪ L′

1 ∪ L′
2

and let G′ = G − NG[I ]. See Figure 2. We also claim that:
1) graph G′ is well-covered and has a perfect matching formed
by its pendant edges. 2) G0 has only one component that is
isomorphic to K2 and their vertices are under a 6-cycle contain-
ing u1 and u2. For the converse, we show all possible sizes of
MIS considering the two cases: V (G0) = ∅ and V (G0) ̸= ∅. If
V (G0) = ∅, then miss(G) = {|V (G1)|+r+1, |V (G1)|+2r} oth-
erwise miss(G) = {|V (G1)|+r+2, |V (G1)|+2r, |V (G1)|+2r+1}.
Therefore µα(G) = r − 1.

... ...

G′G0

L1

L2

r r

u1 u2

z z′

Figure 2: Graph G of girth 6 and two vertices of type r.

Corollary 3

Let r ≥ 3 and let G be a graph of girth at least 6 with
µα(G) = r − 1 such that G contains exactly two vertices of type
r. Then, G ∈ Ir only if r = 3 and the girth of G is exactly 6.
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1. Integer flows

Let G = (V (G ),E (G )) be an undirected graph. Let D be an orientation for E (G ), and f an assignment of
non-negative integer weights to each edge of E (G ). We say that (D, f ) is a k-flow for G if:

1. 0 < f (e) < k , for each e ∈ E (G );

2. the flow balance
∑

e∈∂+(v) f (e)−∑e∈∂−(v) f (e) = 0, for each v ∈ V (G ),

where ∂+(v) (∂−(v)) is the set of edges leaving (entering) vertex v .

In a mod-k flow, the flow balance at each vertex v is
∑

e∈∂+(v) f (e)−∑e∈∂−(v) f (e) ≡ 0 (mod k). Figure 1
shows two graphs that admit a mod-3 flow.

A graph G admits a k-flow if and only if it admits a mod-k flow. Also, if G admits a mod-k flow, then it
admits a mod-k flow for any given orientation. See [1], [2] and [3] for more on k-flows.

Figure 1: Examples of mod-3 flows for graphs K3,3 and K4 plus an edge. In both cases, all weights are equal to 1.

2. Tutte’s 3-flow Conjecture and equivalent formulations

A 3-cut is an edge cut of size three. A bridge is an edge cut of size one. Tutte’s 3-flow conjecture is

Conjecture (Tutte’s 3-flow conjecture)

Every bridgeless graph with no 3-cuts admits a 3-flow.

Two equivalent forms of this conjecture are:

• Every bridgeless 5-regular graph with no 3-cuts admits a 3-flow.

• Every bridgeless graph with at most three 3-cuts admits a 3-flow.

3. Objective

In this work, our objective is to characterize classes of graphs with up to four 3-cuts that admit a 3-flow. K4,
the complete graph on four vertices, is the smallest bridgeless graph that does not admit a 3-flow. We focus on
essentially 4-edge connected graphs, i.e., whose edge cuts of size less than four are associated with vertices of
degree three (3-vertices). Also, our graphs are almost even, i.e., having at most six odd vertices.
We obtain a characterization for such graphs with up to four odd vertices. We also obtain a partial
characterization for graphs with up to four 3-vertices and two odd vertices of higher degree.

4. Motivation

Our motivation is to provide tools for a possible inductive approach to prove Tutte’s 3-flow conjecture.

5. Graphs with exactly four vertices of odd degree

Let G be an essentially 4-edge connected, almost even, graph having at most four odd vertices, with S its set
of odd vertices. We say that G has a forbidden configuration if: (i) the vertices of S all have degree three; (ii)
G [S ] contains K1,3; and (iii) every even-degree vertex v of G is separated from S by an edge cut of size at
most four. We abuse this definition by saying that K4 has a forbidden configuration.

Theorem 1

An essentially 4-edge connected, almost even, graph G with at most four odd-degree vertices admits a 3-flow,
if and only if G does not have a forbidden configuration.

6. Graphs with exactly six vertices of odd degree

We give a partial characterization of almost even graphs with six odd-degree vertices that admit a 3-flow.
By using the same definition of forbidden configuration to graphs with four 3-vertices and two odd-degree
vertices of degree greater than 3, we obtain

Theorem 2

Let G be an essentially 4-edge-connected, almost even, graph with four 3-vertices and two other odd vertices
of degree greater than 3, and assume G has a forbidden configuration. Then, G admits a 3-flow if and only if
there are no 4-cuts separating the 3-vertices from the remaining odd vertices.

Sketch of proof: (if) We contract a set X that contains the two odd vertices with degree higher that three,
and having an associated edge-cut of size six (e.g. V(G) minus the vertices of degree three). By Theorem 1,
the resulting graph admits a 3-flow, that can be extended to G/X . This is a 3-flow for G .

(only if) We contract a set X that contains the two odd vertices of degree higher than three, with an associated
edge-cut of size four. By the previous theorem, G/X does not admit a 3-flow, and so neither does G .
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Introduction

We consider a generalization of the concepts of domination
and independence in graphs. For a positive integer k, a subset
S of vertices in a graph G = (V,E) is k-dominating if every
vertex of V −S is adjacent to at least k vertices in S. The sub-
set S is k-independent if the maximum degree of the subgraph
induced by the vertices of S is at most k−1. Thus for k = 1, the
1-independent and 1-dominating sets are the classical indepen-
dent and dominating sets. The minimum and maximum sizes of
a maximal k-independent set in G are denoted ik(G) and αk(G),
respectively. The minimum and maximum sizes of a minimal
k-dominating set in G are denoted γk and Γk, respectively.

The complementary prism of a graph G, denoted by GG,
is a graph obtained by the disjoint union of G and its complement
G by adding edges of a perfect matching between the correspond-
ing vertices. The Petersen graph is a complementary prism of
the cycle on 5 vertices, as shown in Figure 1.

Figure 1: Two representations of the Petersen graph, the C5C̄5 graph.

Haynes et al. [4] show upper and lower bounds for the
maximum cardinality of 1-independent sets and for the mini-
mum cardinality of 1-dominating sets. For a graph G, Chellali
et al. [1] present a survey with relations and bounds between
α(G), i(G), γ(G) and Γ(G). Duarte et al. [2] prove that finding
α1 of a complementary prism GG is an NP-complete problem.

We present sharp lower and upper bounds for maximum
2-independent sets in complementary prism of any graph, charac-
terize the graphs for which the upper and lower bound holds, and
present closed formulas for the complementary prism of paths,
cycles and complete graphs.

Relationships between the parameters

Since every set which is both 1-independent and 1-
dominating is a minimal 1-dominating set of G, it is easy to
see that

γ1(G) ≤ i1(G) ≤ α1(G) ≤ Γ1(G)

for any graph G.
Favaron [3] shows that, for any graph G and positive in-

teger k, γk(G) ≤ αk(G) and ik(G) ≤ Γk(G).

Some general properties:
•Every k-dominating set of a graph G contains at least k ver-

tices and all vertices of degree less than k; so γk(G) ≥ k when
n ≥ k.

•Every set with k vertices is k-independent; so ik(G) ≥ k when
n ≥ k.

•Every set S that is both k-independent and k-dominating is
a maximal k-independent set and a minimal k-dominating
set.

•Every (k + 1)-dominating set is also a k-dominating set.
•Every k-independent set is also a (k + 1)-independent set.

Results on 2-independent sets in com-
plementary prisms

Haynes et al. [4] show that, for any graph G, α1(G) +

α1(G) − 1 ≤ α1(GG) ≤ α1(G) + α1(G), and both these bounds
are sharp. In Theorem 1, we generalize this result for α2(GG).

V (Ḡ)

V (G)

Figure 2: Graph with a maximum 2-independent set highlighted (red vertices)
with α2(GG) = α1(G) + α1(G).

Theorem 1
For any graph G,

α1(G) + α1(G) ≤ α2(GG) ≤ α2(G) + α2(G),

and both these bounds are sharp.

The graph G whose complementary prism GG is shown in
Figure 2 attains the lower bound of Theorem 1, and the graph C5

attains the upper bound. In the following result, we characterize
the graphs for which the upper bound holds.
Theorem 2
A graph G has α2(GG) = α2(G) + α2(G) if and only if there
exist disjoint vertex sets S and T in V (G) such that S is α2(G)-
set and T induces a maximum multipartite graph in G such
that every partition has size at most two.

Now we show exact values for α2 for some particular graph
classes.
Theorem 3
Let n ≥ 5. Then, α2(KnKn) = n + 1,

α2(PnP n) =

{
2⌊n/3⌋ + 4, n ≡ 2 (mod 3),

2⌊n/3⌋ + 3, otherwise,

α2(CnCn) =

{
2⌊n/3⌋ + 3, n ≡ 2 (mod 3),

2⌊n/3⌋ + 2, otherwise.

Future work
As future work, we plan to characterize graphs attaining

the lower bound on Theorem 1; to extend the presented results
for αk, for k ≥ 3; and to study k-dominating sets in complemen-
tary prisms.
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With algorithms modified by 
LexBFS the search space is 
significative smaller, but the 
runtime was significative longer. 

CONCLUSION

In this work five exact algorithms 
for the maximum clique problem 
(MC) were modified with 
Lexicographic Breadth-first 
Search (LexBFS) algorithm. Also, 
Experimental Analysis of 
Algorithms and hypothesis test 
were used to evalutate the 
changes.

Study branch and bound 
algorithms that use vertex 
coloring to solve MC modified 
with the LexBFS algorithm.

Apply Experimental Analysis 
of Algorithms.

Apply Statical Inference 
Theory.

1.

2.

3.

Branch and bound algorithms for 
MC evaluate a search space. A 
small search space may or may not 
result in shorter runtime. 

OBJECTIVESINTRODUCTION MAXIMUM CLIQUE ALGORITHMS
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80 instances from DIMACS Second Implementation Challenge
150 instances: random graphs, chordal graphs and cographs
C++ implementation in https://gitlab.c3sl.ufpr.br/apzuge/maxcliquebb

Comparison of the search space evaluated by two algorithms and their respective modifications. For each 
vertex set size there is a sample size of 10.
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1. Introduction
Pre-processing algorithms are frequently employed when solving large problems and are often fundamental to do so. Until
recently, however, these algorithms were designed without theoretical guarantees, and measuring their effectiveness was a
completely empirical process. Parameterized complexity offers a sound theoretical framework that allows us to prove lower and
upper bounds for these kernelization algorithms, as they came to be known in the community [2]. Given an instance (x, k)
of a parameterized problem Π, we say that Π admits a kernel of size g(k) when parameterized by k if we can build an equivalent
Π instance of size at most g(k). Motivated by the fact that Multicolored Independent Set is a central problem in
parameterized complexity, we prove the following theorem, where a class G is non-trivial if, for every t ∈ N, G contains a graph
on t vertices; we point out that Independent Set does admit a polynomial kernel [3] under vertex cover.

2. The theorem
For every fixed non-trivial graph class G, Multicolored Independent Set does not admit a polynomial kernel
when jointly parameterized by vertex deletion distance to G and size of the solution, unless NP ⊆ coNP/poly.

3. Multicolored Independent Set

An instance is a pair (G,ϕ) where G is a graph, ϕ is
a partition of V (G), and the goal is to find an inde-
pendent set of G that hits each part of ϕ exactly once.

ϕ1 ϕ2 ϕ3 ϕ4

4. Cross-composition
We use the cross-composition framework of Bodlaender et
al. [1] to show that 3-Coloring OR-cross-composes into
Multicolored Independent Set parameterized by dis-
tance to G and size of the solution. That is, it is a many to
one reduction with the following constraints:

H1

H2

Ht

G,ϕ

t instances of
3-Coloring

V (Hi) = [n]
for every Hi

(G,ϕ) is YES
iff some Hi is YES

Parameters must be
bounded by poly(n + log t)

..
.

5. Instance Selector Gadget

Begin by adding to G a set Y = {y1, . . . , yt} that induces a
graph of G, and add Y as a part of ϕ.

6. Vertex Gadget

For each v ∈ [n], add to G a gadget Gv containing an in-
dependent set A(v) = {ve(a) | a ∈ [n] \ {v}} and a copy
K(v) of the complete tripartite graph Kn−1,n−1,n−1. For each
Gv, add parts {p(v, a) | a ∈ [n] \ {v}} to ϕ; each p(v, a) con-
tains ve(a) and three non-adjacent vertices v1(a), v2(a), v3(a) of
K(v). For each Hi, if av /∈ E(Hi), add edges {yivj(a)}j∈[3] and
{yiaj(v)}j∈[3], otherwise add edges yive(a) and yiae(v). For
each av ∈ ⋃i∈[t] E(Hi), add vj(a)aj(v) for every j ∈ {1, 2, 3}.

ve(a)

ve(b)

ve(c)

ve(d)

v1(a)
v1(b)

v1(c)

v1(d)

v2(a) v2(b) v2(c) v2(d)

v3(a)

v3(b)

v3(c)
v3(d)

yi
d2(v)

7. Intuition

•For each v ∈ [n] we can only choose vertices of one
color class of K(v) ⇒ vi(·) is in the solution I if
and only if we color v ∈ [n] with color i.
• If vi(a) ∈ I , then ai(v) /∈ I ⇒ v and a cannot

have the same color.
• If ve(a) ∈ I, we can ignore edge av⇒ when ve(a) ∈
I, v and a can have the same color.
•There is a unique yi ∈ I and, for every av ∈ E(Hi),
ve(a) /∈ I, so some vi(a) must be in I and ai(v)
must not ⇒ if yi ∈ I, vertices that are adjacent in
Hi cannot have the same color.

yi

vi(a)
ve(a)

ai(v)
ae(v)

vi(b)
ve(b)

bi(v)
be(v)
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Introduction

This work presents complexity results about the NP-Completeness of Partition edge-coloured Graphs into vertex disjoint
Monochromatic Trees (PGMT) when we restrict the frequency with each color occurs at the edges of the graph. Jin and Li [3]
defined the the PGMT problem as follows:

THE PGMT PROBLEM
Instance: An edge-coloured graph G and a positive integer k.
Question: Are there k or less vertex disjoint monochromatic trees which cover the vertices of the graph G?

Figure 1 shows an example of a graph partitioned into monochromatic trees; even in the colored graph with 3 colors, only two
trees are sufficient to cover the vertices.
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Figure 1

Related Works

In their work, Jin and Li [3] showed that PGMT is NP-Complete and there is no constant factor approximation algorithm.
Jin and Li [4], defined a more restricted version of the problem. In this version, the number of distinct colors of G is fixed, and
this version is known as r-PGMT, where r is the number of colors. For all r ≥ 5, they showed that r-PGMT is also
NP-Complete.
Jin et al. [2] showed that, for r = 2, r-PGMT is also NP-Complete for bipartite graphs. For complete bipartite and complete
multipartite graphs, however, they presented algorithms that solve the problem in polynomial time.

The fMAX-PGMT Problem

Jin and Li [4] considered a version of PGMT where the number of different colors of the graph is fixed. In this work we consider
another kind of restriction to the input graph. In this version, instead of fixing the number of different colors, we only guaranteed
that each color appears at most f times. We define this version as follows:

THE fMAX-PGMT PROBLEM
Instance: An edge-coloured graph G, where each color occurs at most f times, and a positive integer k.
Question: Are there k or less vertex disjoint monochromatic trees which cover the vertices of the graph G?

NP-Completeness Results

We now show that fMAX-PGMT is NP-Complete, when f = 3, by reducing from Exact Cover by 3-Sets - X3C [1], which is
defined as follows:

The X3C Problem
Instance: An set X = {v1, ..., vn}, |X | = 3k; an family of subsets F = {S1, S2, ..., Sm}, Si ⊆ X e |Si| = 3, i ∈ {1, 2, ..., |F|}.
Question: Is there F ′ ⊆ F , such that ⋃S∈F ′ S = X ?

We build an instance (G, k + m − 2) of fMAX-PGMT that is equivalent to an instance (X , F) of X3C as follows: The set of
vertices is V (G) = {v1, ..., vn, S1, ..., Sm, z1, ..., zm−2}. The set of edges is

E(G) =




viSj, if vi ∈ Sj

ziSp
(1)

for all i ∈ {1, ..., n}, j ∈ {1, ..., m}, p ∈ {i, i + 1, i + 2}. And coloring the edges as follow:

c(e) =




cj , if e = viSj

cm+p , if e = zpSq
(2)

for all e ∈ E(G), i ∈ {1, ..., n}, j ∈ {1, ..., m}, p ∈ {1, ..., m − 2}, q ∈ {p, p + 1, p + 2}. Figure 2 shows an example of the
transformation described: (a) X3C instance and (b) colored graph from that instance.
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Aα-Spectral Theory

Definition 1.([3]) Let G = G(V,E) be a simple graph. The matrix Aα(G) is defined by
Aα(G) = α ·D(G) + (1− α) · A(G), α ∈ [0, 1],

where A(G) denotes the adjacency matrix of G and D(G) = (dij), is a matrix of order n, where dij = 0, if
i 6= j and dij = d(vi), if i = j.

Matrogenic Graphs

Definition 2. Let G = G(V,E) be a graph. Given u, v ∈ V , we say that u dominates v if NG(v)− {u} ⊆
NG(u)− {v}. When neither u dominates v nor v dominates u, then u and v are called incomparable.
Definition 3. A graph G is matrogenic if for any two vertices u and v, incomparable in G, we have
|(NG(u)− {v})⊕ (NG(v)− {u})| = 2, where the symbol ⊕ denotes the symmetric difference.
Definition 4. A split graph S(r, s) is a graph whose vertices can be partitioned into a clique of size r, and a
independent set of size s. A split graph is called complete if every vertex in the independent set is adjacent to
every vertex in the clique; it is denoted by CS(s, r).
Definition 5. A graph G is threshold if for u, v ∈ V (G), either u dominates v or v dominates u.

Properties of Matrogenic Graphs

Definition 6. A perfect matching, tK2, is the union of t copies of K2 and a cocktail party graph, CP (2t), is
the complement of a perfect matching.

3K2 CP (6) G11(CS(3, 2), CP (6))

Some properties of the matrogenic graphs: all induced subgraphs of a matrogenic graph are matrogenic; the
complement of a matrogenic graph is matrogenic and the class of matrogenic graphs contains the class of
threshold graphs. In particular, as the split complete graph is threshold, it is matrogenic.
Theorem 1.([2]) A graph G = G(V,E) of order n is matrogenic if and only if V can be partitioned into
three distinct sets K,S, and C such that
(i) K ∪ S induces a matrogenic split subgraph in which K is a clique and S is a independent set;
(ii) C induces a perfect matching, or a cocktail party, or a C5;
(iii) every vertex of C is adjacent to every vertex of K and to no vertex in S.
Theorem 1 gives us a way to characterize matrogenic graphs from a partition of its vertex set V . Thus, we can
denote every matrogenic graph as Gn([K ∪ S], [C]). In the previous figure we show the matrogenic graph
G11(CS(3, 2), CP (6)).

Aα-Spectrum

In this work, we analyze the Aα-spectrum of a subclass of matrogenic graphs.
Theorem 2. If H = Gn(CS(k, s), CP (2t)) then Aα-characteristic polynomial of H is given by

PAα(H)(x) = f (x)[x− α(2t + k) + 2]t−1(x− αn + 1)k−1(x− αk)s−1[x− α(2t + k − 2)]t,
where f (x) = det(xI − Aα(H)),

Aα(H) =




α(k + 2t− 2) + (1− α)(2t− 2) (1− α)k 0
(1− α)2t α(k − 1 + s + 2t) + (1− α)(k − 1) (1− α)s

0 (1− α)k αk




.

Sketch of proof. There is a labeling of the vertices of the graph H , so that the matrix Aα can be written

Aα(H) =




Bα (1− α)J2t×k 02t×s
(1− α)Jk×2t Cα (1− α)Jk×s

0s×2t (1− α)Js×k αkIs




,

where we denote the all-ones matrix by J , the all-zeros matrix by 0, the identity matrix by I ,
Bα = α(k + 2t− 2)I2t + (1− α)(J2t − I2t − A(tK2)) and Cα = α(k − 1 + s + 2t)Ik + (1− α)(Jk − Ik).
Denote by ek the vector with 2t coordinates whose k-th entry is equal to 1 and the others entries are zero.
For each j, ` and i, with 1 ≤ j ≤ t, 2 ≤ ` ≤ k and 2 ≤ i ≤ s, consider the vectors zj = (e2j−1 − e2j|0|0)T ,
w` = (0|e2t+k+1 − e2t+k+`|0)T and vi = (0|0|e2t+k+1 − e2t+k+i|0)T . We have,

Aα(H)zj = α(2t + k − 2)zj, Aα(H)w` = (αn− 1)w` and Aα(H)vi = αkvi.
Now, consider the vector v(i) = e2i−1 + e2i. Some calculations show that the t − 1 vectors of the form

v(1) − v(i)|0|0




T , 2 ≤ i ≤ t, are the eigenvectors of Aα(H) associated with the eigenvalue α(k + 2t)− 2.
The other eigenvalues are the roots of the polynomial f (x), which follows from the matrix reduction technique
(see Theorem 1.3.14 of [1]).

Conclusion

As it was claimed in [3], the matrix Aα can underpin a unified theory of the spectral study of the adjacency and
singless Laplacian matrices of a graph. In this work, we obtain a partial factorization of the Aα-characteristic
polynomial of a subfamily of matrogenic graphs which explicitly gives some eigenvalues of the graph.
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Introduction

A decomposition of a graph G is a set D = {H1, . . . , Hk} of edge-disjoint
subgraphs of G such that ∪ki=1E(Hi) = E(G). A locally irregular graph
is a graph in which adjacent vertices have distinct degrees.

Figure 1: A locally irregular graph

A locally irregular decomposition (or locally irregular coloring)
of a graph G is a decomposition in which every element is locally irregular. We
say that G is decomposable if it admits a locally irregular decomposition.
Equivalently, a locally irregular decomposition is a coloring of E(G) in which
every color class induces a locally irregular subgraph in G. If k colors are
used, then we say locally irregular k-edge-coloring or k-LIC for short.

(a) (b) (c)

Figure 2: (a) A 2-LIC of G. (b) An induced subgraph of G using the edges with color red.
(c) An induced subgraph of G using the edges with color blue.

Given a decomposable graph G, the irregular chromatic index of G is
the smallest number k for which G admits a k-LIC. We denote the irregular
chromatic index of G by χ′irr(G). The problem of computing the irregular
chromatic index was proven to be an NP-complete problem [2].
In this work we explore the following conjecture posed by Baudon et al. [1].

Conjecture 1 (O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak,
2015).For every decomposable graph G, we have χirr(G) ≤ 3.

Results toward confirming Conjecture 1 include that graphs whose set of
vertices can be partitioned into a clique and an independent set admit a 3-
LID [3] and graphs with maximum degree at most 3 admit a 4-LID [4]. We
explore Conjecture 1 for graphs in which all vertices have degree 3, which are
called cubic graphs.

Contribution
In this poster we verify Conjecture 1 for a class of cubic graphs; and we
present a condition for a graph not to be 2-LIC.

Locally irregular coloring of some cubic graphs

A proper edge-coloring of a graph G is an assignment of colors to the
edges ofG in which edges that share a vertex are colored with different colors.
A P2-decomposition of a graphG is a decomposition ofG into paths of length
2. Let G be a cubic graph, and let P be a P2-decomposition of G. Given
a vertex v ∈ V (G), let P(v) denote the number of paths P ∈ P for which
dP (v) = 1, and let V Pi be the set of vertices v of G for which P(v) = i.
Theorem 1. If G is a cubic graph that admits a P2-decomposition P for
which G[V P1 ] is a set of vertex-disjoint cycles, then χ′irr(G) ≤ 3.
Proof: First note that P(v) ∈ {1, 3} for every v ∈ V (G). In particular
every vertex of V P1 is the interior vertex of precisely one path of P . Since
G[V P1 ] is a set of vertex-disjoint cycles, every vertex in V P1 is adjacent to
precisely one vertex of V P3 and two vertices of V P1 . Given a cycle C ∈ G[V P1 ],
we partition the vertex set ofC into pairs and at most one triple of consecutive
vertices.

Let H be the graph obtained from G \ E(G[V P1 ]) by identifying vertices in
the same pair or triple, and keeping parallel edges. Note that every path of P
has exactly one edge in H . The graph H is a bipartite graph with maximum
degree exactly 3. It is not hard to prove that G admits a proper edge-coloring
with three colors.
Now, we use the the proper edge-coloring above to obtain a locally irregular
coloring of E(G). By construction every path in P has precisely one edge
already colored in H , and we color its remaining edge (which is in a cycle of
G[V P1 ]) with the same color. Since each vertex ofG[V P1 ] is in the same pair or
triple of at least one of its neighbors in G[V P1 ], each path of P is colored with
the same color of at most one path with which it shares a vertex. Therefore
each color consists of vertex-disjoint paths of length 2 and trees with four
edges and one vertex of degree 3, and hence, is a locally irregular graph.

In order to prove that some cubic graphs have locally irregular chromatic
index at least 3, we define the gadget below which we call a strip. So we
have the following theorem.

Theorem 2. If G has a strip S whose vertices with degree 3 are not
adjacent to vertices in V (G) \ S, then χ′irr(G) > 2.
Proof: The proof follows from the fact that any 2-LIC of a “half strip” must
be as in the figure below, and then the two “half strips” of the same strip
cannot be colored in a compatible manner.

By replacing one edge by strip, we can prove that there are infinitely many
graphs that do not admit a 2-LIC. In particular, there are an infinite number
of cubic graphs with chromatic index 4 and planar graphs that do not admit
an 2-LIC, and hence the upper bound of Conjecture 1 is tight for these classes
of graphs.
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1. Introduction
Graph reconfiguration problems have been studied extensively in the literature,
with Independent Set Reconfiguration [3] being by far the favorite re-
search topic. Nevertheless, reconfiguration problems of other graph structures,
such as vertex covers [4] and vertex colorings [1], have also been investigated. No
previous work, however, has dealt with the reconfiguration of vertex separators.
In this work, we begin this study in the form of the Vertex Separator
Reconfiguration problem. In this problem, we are given a graph G and
two st-separators Sa and Sb of G, and the goal is to reconfigure Sa into Sb. We
prove its complexity on a subclass of bipartite graph under the three most com-
mon reconfiguration rules: token sliding (TS), token jumping (TJ), and token
addition/removal (TAR); being PSPACE-hard under TS and NP-hard under the
other two. We also show that TS and TAR computationally equivalent.

2. Token Sliding
Replace v ∈ A with some
vertex in N(v) \ A.

s t

s t

3. Token Jumping
Replace a vertex of A with any
other vertex of G not in A.

s t

s t

4. k-Token Add./Rem.

Add/remove a vertex from A, so long
as the resulting A′ satisfies |A′| ≤ k.

s t

s t

5. TAR/TJ are equivalent

Let us assume that |Sb| ≥ |Sa| and Sa 6= Sb. We can easily simulate a TJ instance (G,Sa, Sb): just
create the TAR instance (G,Sa, Sb, k + 1), where k = max{|Sa|, |Sb|}. For the converse, given a
TAR instance (G,Sa, Sb, k), if |Sb| = k and Sb is minimal, then we answer negatively. Otherwise,
pick any two st-separators S ′a ⊆ Sa and S ′b ⊆ Sb of same size and with at most k − 1 vertices; it
follows that (G,Sa, Sb, k) is equivalent to (G,S ′a, S

′
b, k) and that we can reconfigure S ′a and S ′b into

Sa and Sb, respectively. We can also show that any reconfiguration sequence between S ′a and S ′b can
be made into an alternating reconfiguration sequence, i.e. it simulates a TJ reconfiguration sequence.

s t s t

s t s t s t

6. Complexity on bipartite graphs
Let G be a bipartite graph with bipartition A,B and H the bipartite graph ob-
tained by adding to G two vertices u, v such that u is adjacent to every vertex
of A and v to every vertex of B. Our reduction is from Independent Set
Reconfiguration which is NP-complete on bipartite graphs under TJ and
PSPACE-hard under TS [3]. Its correctness follows from a simple but powerful
observation: A set I ⊆ V (G) is independent in G if and only if V (G) \ I is
an uv-separator of H . Formally, if (G, Ia, Ib) is the Independent Set Re-
configuration instance, we construct the equivalent Vertex Separator
Reconfiguration (H,V (G) \ Ia, V (G) \ Ib) where H is defined as before.

u v

7. Final Remarks
We investigated the complexity of the reconfiguration of vertex separators under three
commonly studied reconfiguration rules. We also showed that TAR and TJ are compu-
tationally equivalent. In the arXiv version of this work [2], we also presented polynomial
time algorithms for various classes, including series-parallel graphs and graphs with a
polynomial number of minimal separators, which have been omitted here.
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Abstract
We introduce a concept of packing of graphs which generalizes all those previously defined in the literature and
we study the computational complexity of computing the associated parameter, the generalized packing number of
the graph. We find that this new packing parameter comes to be much more complicated to handle than those
previously defined, even on particular graph classes as spider and quasi-spider graphs. Nevertheless, we prove that
the associated optmization problem can be solved in linear time for some graph classes with few P4’s.

General packing functions
Let G = (V,E) be a graph and k, `,u ∈ ZV

+ with ` ≤ u. A (k, `,u)-packing function of G is a function f : V → Z+

satisfying the following conditions for all v ∈ V : `(v) ≤ f(v) ≤ u(v) and f(N [v]) ≤ k(v). In addition, we define
Lk,`,u(G) = {f : f is a (k, `,u)− packing function of G}. Then, the (k, `,u)- generalized packing number of G is

Lk,`,u(G) = max{f(V ) : f ∈ Lk,`,u(G)}.

Reduction to instances with ` = 0: Lk,`,u(G) = `(V ) +Lk̃,0,ũ(G) for k̃(v) = k(v)− `(N [v]), ũ(v) = u(v)− `(v)

Lk,`,u(G)→ Lk̃,0,ũ(G)→ Lk̃,ũ(G).

Given f ∈ Lk,u(G) such that f(V ) = Lk,u(G) we say that f is an optimal (k,u)-packing function of G.
The Packing Function Problem (PFP) has a graph G and vectors k,u ∈ ZV (G)

+ as input and the objective is to obtain
an optimal (k,u)-packing function of G.

Modular decomposition
The modular decomposition of graphs involves two graph operations, union (∪) and join (∨). If a graph is not
connected, it is the union of two graphs and if the complement of a graph is not connected, the graph is the join of
two graphs (figure below). A graph is modular if it is connected and its complement is connected.

The parameter for these two operations can be computed as follows. Let k = (k1,k2),u = (u1,u2), k∗i = min{ki(u) :
u ∈ Vi} for i = 1, 2, `1(r) = min{Lk1−r.1,u1

(G1), k∗2}, `2(r) = min{Lk2−r.1,u2
(G2), k∗1}, and ∆(s) = min{∆ : s ≤

`1(`2(s)−∆), ∆ ∈ [0, `2(s)]}. Then,

Lk,u(G1 ∪G2) = Lk1,u1(G1) + Lk2,u2(G2),

Lk,u(G1 ∨G2) = max{s + `2(s)−∆(s) : s ∈ [0, `1(0)]}.
Example:
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U

U
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k=(3,3,1,3,3,2,2)
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Lk,u(G) = Lk,u(G1 ∨G2) = Lk,u(((G111 ∪G112) ∨ (G121 ∪G122)) ∨ (G21 ∨ (G221 ∪G222)) = 2

For a graph class F , we denote by M(F) the class of graphs in F which are modular. From the previous formulas
we have the following result.

Lemma 1. Let F be a hereditary family of graphs such that the PFP can be solved in polynomial (resp. linear) time
for graphs in M(F). Then, the PFP can be solved in polynomial (resp. linear) time for every graph in F .

Thus, let us study the graphs in F for graph classes with few P4’s, such as P4-sparse graphs and P4-tidy graphs.
Formally, a graph is P4-sparse if every set of five vertices contains at most one induced path on four vertices.

Spider graphs and P4-sparse graphs

A spider is a graph G = (V,E) such that V is partitioned into sets S, C and H,
where S = {sj : j ∈ [n]} is a stable set, C = {cj : j ∈ [n]} is a clique, n ≥ 2, and
the head H is allowed to be empty. Moreover, all vertices in H are adjacent to all
vertices in C and no vertex in S. Besides, in a thin spider graph, si is adjacent
to cj if and only if i = j, and in a thick spider graph, si is adjacent to cj if and
only if i 6= j. We denote a spider by (C, S,H).

Lemma 2. Let G = (C, S,H) be a thin spider graph. Then

Lk,u(G) = u(S) + Lk̃,ũ(G[C] ∨G[H]).

where k̃(h) = k(h) and ũ(h) = u(h) for all h ∈ H, k̃(ci) = k(ci)− u(si) and ũ(ci) = min{u(ci), k(si)− u(si)}.

The approach to study the problem in thick spiders is based on technical lemmas. They allow us to reduce the
general problem to a particular instance (k = u) in thick spiders with empty head. Then, we apply a transformation
from a thick spider with empty head to a particular graph Hn, which has even order and the edges missing form a
perfect matching as is shown in the next example.

For a spider graph G and k = (6,3,5,4,6,7,5,3) we have

k̃ = (7, 6, 3, 5), u = (6, 3, 5, 4)⇒ Lk,k(G) = Lk̃,u(H4)

Finally, this process derives the following result.

s1

s2
s3

s4

c1

1

2 3

4

HG 4

c2c3
c4

Proposition 1. If the PFP is polynomial (linear) time solvable on a graph family F , then the PFP can be solved
in polynomial (linear) time on spider graphs such that the graph induced by the head is in F .

From the decomposition results [1, 2], if F is the class of P4-sparse graphs, we know that the graphs in M(F) are
the trivial graph and spider graphs such that the graph induced by the head is P4-sparse.
Lastly, considering the previous results and Lemma 1, we obtain the next theorem.

Theorem 1. The PFP is linear time solvable for P4-sparse graphs.

Particular case in P4-tidy graphs
A partner of a path P on four vertices in a graph G is a vertex v ∈ V (G) \ V (P ) such that the subgraph induced
by V (P ) ∪ {v} has at least two paths on four vertices. A graph G is a P4-tidy if every path on four vertices has at
most one partner.

Considering the problem, a particular case of the PFP is obtained when u(v) = k(v) = k ∀v ∈ V , for k ∈ Z+ fixed.
In this case the problem is denoted {k}-PFP.
Concerning this restricted problem, the linearity result can be settled in P4-tidy graphs, a graph class larger than
P4-sparse. Regarding modular decomposition, it is known that a P4-tidy graph G is modular if and only if G is the
trivial graph, C5, P5, P5, or a quasi-spider graph such that the graph induced by the head is P4-tidy. A quasi-spider
graph is a graph obtained from a spider by replacing at most one vertex in S ∪ C by a K2 or a S2.
Based on modular decomposition and applying the results obtained for the mentioned P4-tidy modular graphs, we
derive the following.

Theorem 2. The {k}-PFP is linear time solvable for P4-tidy graphs.
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Introdução

Neste trabalho, consideraremos grafos simples, finitos e não direcionados. Considere a situação em que um grafo G modela
uma rede de multiprocessadores com dispositivos de detecção colocados em vértices escolhidos de G. O objetivo desses
dispositivos é detectar e identificar com precisão a localização de um processador defeituoso que pode estar presente em
qualquer vértice. Às vezes, esse dispositivo pode determinar se um processador defeituoso está em sua vizinhança, mas não
pode detectar se o defeito está em sua própria localização. Como é caro instalar e manter dispositivos de detecção, nessa
rede cada detector terá no máximo um dispositivo detector em sua vizinhança. Então, queremos determinar a localização do
número mínimo de dispositivos que podem, entre eles, determinar com precisão uma falha em qualquer local. Essa situação
é uma aplicação direta do conceito de conjuntos dominantes e independentes abertos.
O principal objetivo desse trabalho é a determinação do número de dominação total e independência aberta, WOPOIND, para o
produto lexicográfico de grafos.

Conceitos Básicos
I Produto Lexicográfico

Sejam os grafos G e H, onde os conjuntos de vértices é dado por V (G) = {g1, g2, ..., gn} e V (H) = {h1, h2, ..., hm}. O produto

lexicográfico, [1, 3], desses dois grafos, representado por G ◦ H, terá o conjunto de vértices, V (G ◦ H) = V (G) × V (H) e o
conjunto de arestas, E (G ◦ H) = {(gi, hj) (gk, hl) | gigk ∈ E (G) ou gi = gk e hjhl ∈ E (H)}.

I Conjuntos Dominantes Totais e Independentes Abertos
Um conjunto dominante de um grafo G = (V , E), é um subconjunto D de V (G) onde cada vértice que não pertence a D é
adjacente a pelo menos um vértice de D. O conjunto D é dominante total se ∪x∈D N (x) = V (G), ou seja, se |N (v) ∩ D | > 1,
para todo v ∈ V (G).
Um conjunto independente de um grafo G é um conjunto S de vértices de G, tal que não existem dois vértices adjacentes
contidos em S. O conjunto S ⊆ V (G) é independente aberto se para cada v ∈ S, |N (v) ∩ S | 6 1.
Denotaremos por WOPOIND(G) a cardinalidade mínima de um conjunto dominante total e independente aberto de um grafo
G, quando existir.

Figura 2: Produto lexicográfico P2 ◦ C3 e um grafo G comWOPOIND(G) = 4.

Trabalhos Relacionados
Seo e Slater [2] definem conjuntos dominantes totais e independentes abertos e consideram propriedades adicionais para
esse parâmetro em classes específicas de grafos. Em [4], os autores apresentam resultados de conjuntos dominantes totais
para produtos lexicográficos e produtos lexicográficos generalizados. Samodivkin, em [5], mostrou resultados de conjuntos
dominantes emparelhados, que são conjuntos dominates S em que o subgrafo induzido por S contém um emparelhamento
perfeito. Samodivkin provou que o problema de decisão associado a conjuntos dominantes emparelhados é NP-completo
mesmo para grafos bipartidos.
Motivadas pelos trabalhos citados nós determinados o valor do número de dominação total e independência aberta para
classes simples e para o produto lexicográfico de dois grafos. A Figura 2 exibe grafos e conjuntos independentes,
dominantes e dominantes total e independente aberto.

Alguns resultados básicos

Proposição 1 Seja Kn um grafo completo, para n > 2, então WOPOIND(Kn) = 2.

Proposição 2 Seja Pn um grafo caminho, para n > 2, então WOPOIND(Pn) = 2 · dn4e.

Proposição 3 Seja Cn um grafo ciclo, com n > 2 e n ≠ 5, então WOPOIND(Cn) = 2 · dn4e.

Produtos Lexicográficos

Teorema 4 Sejam G e H dois grafos quaisquer. Se G admite um conjunto dominante total e independente aberto, então
WOPOIND(G ◦ H) = WOPOIND(G).

Ideia da prova: Seja G um grafo qualquer com n vértices e com conjunto dominante total e independente aberto D.
Considere V (G) = {g1, g2, · · · , gn}, V (H) = {h1, h2, · · · , hm}, Xi = {(gi, hj) ∈ V (G ◦ H) : 1 6 j 6 m} e a componente
Gi = G ◦ H [Xi] .. Seja D′ = {(gi, hj) ∈ V (Gi) |gi ∈ D e j ∈ {1, 2, · · · ,m}}. É possível verificar que D′ é um conjunto dominante
total e independente aberto em G ◦ H e logo WOPOIND(G ◦ H) 6 WOPOIND(G).
Agora, seja D′ um conjunto dominante total e independente aberto em G ◦ H. Seja D = {gi | (gi, hj) ∈ D′}. É possível verificar
que D é um conjunto dominante total e independente aberto em G. O que implica em WOPOIND(G ◦ H) > WOPOIND(G).

Corolário 5 Seja Kn o grafo completo, Cn o grafo ciclo e Pn o grafo caminho com n vértices. Então,
I WOPOIND(Kn ◦ H) = 2, para n > 2.
I WOPOIND(Cn ◦ H) = 2 · dn4e, para n > 2 e n ≠ 5.
I WOPOIND(Pn ◦ H) = 2 · dn4e, para n > 2.
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Abstract

The recognition of biclique graphs in general is still open. Recently, Groshaus and Guedes introduced the mutu-
ally included biclique graph as an intermediate operator to define the biclique graph. Also, we previously studied the
biclique graph of interval bigraphs and proper interval bigraphs. In this work, we extend the results to a superclass,
the interval containment bigraphs, in the context of the mutually included biclique graphs.

Introduction

Given a graph G, its biclique graph (KB(G)) is the intersection graph of the bicliques of G. It was in-
troduced by Groshaus and Szwarcfiter in 2010 [5]. They presented a characterization of biclique graphs
and a characterization of biclique graphs of bipartite graphs, but the time complexity of the problem of
recognizing biclique graphs remains open.

Bicliques in graphs have applications in various fields, for example, biology: protein-protein inter-
action networks, social networks: web community discovery, genetics, medicine, information theory.
More applications (including some of these) can be found in the work of Liu, Sim, and Li [9].

In 2018 Groshaus and Guedes introduced the mutually included biclique graph (KBm(G)) [3, 4] as
a spanning subgraph of KB(G). They proved that KB(G) = (KBm(G))2 for any K3-free graph G,
and that KBm(bipartite) ⊂ comparability graphs.

In this work, we present some results about biclique graphs and mutually included biclique graphs of
interval bigraph, interval containment bigraph, and bipartite graphs in general.

Classes Studied

•CGI: Containment graph of intervals [2]
A graph G is a containment graph of intervals if its vertices can be represented by a family of in-
tervals on the real line such that two vertices are adjacent if and only if one of the corresponding
intervals contains the other. Call that family of intervals a interval containment model of G.

• ICB: Interval containment bigraphs [8]
A bipartite graph G is an interval containment bigraph if its vertices can be represented by a family
of intervals on the real line such that two vertices are adjacent if and only if they are of different parts
and one of the corresponding intervals contains the other. Call that family of intervals a bipartite
interval containment model of G.

• IBG: Interval bigraphs (IBG ⊆ ICB) [6]
A bipartite graph G is an interval bigraph if its vertices can be represented by a family of intervals
on the real line such that two vertices are adjacent if and only if they are of different parts and the
corresponding intervals intersect. Call that family of intervals a bipartite interval model of G.

•PG: Permutation Graphs = CGI = comparability ∩ co-comparability [1]

Definitions

• Two bicliques B1, B2 are vertex-intersecting if they intersect and G[B1 ∩B2] has no edges.

• Two bicliques B1, B2 are edge-intersecting if G[B1 ∩B2] has at least an edge.

• Two bicliques B1, B2 are mutually included if one part of B1 is properly include in one part of B2,
and the other part of B2 is properly included in the other part of B2 [3, 4]. See Figure 1.

• The mutually included biclique graph of a graph G (denoted KBm(G)) is the graph which each
vertex corresponds to a biclique of G and two vertices are adjacent if the corresponding bicliques are
mutually included [3, 4]. Note that the binary relation of being mutually include is not transitive.

Figure 1: Graph G with 3 bicliques, red, blue and green. The blue biclique is mutually included with both red and green,
but the red and green bicliques are not mutually included with each other. On the right, the graph above is KB(G) and the
one below is KBm(G).

• An asteroidal triple (AT ) is an independent set with 3 vertices such that for every pair of vertices
there is a path connecting them while avoiding the neighbors of the third vertex [7]. See Figure 2
(right) for an example of an AT .

• A bi-asteroidal triple (biAT ) is an asteroidal triple such that the path between each pair of vertices
is not adjacent to the neighborhood of the third vertex [6]. See Figure 2 (left) for an example of an
biAT .

Figure 2: Example of a bi-asteroidal triple (left) and an asteroidal-triple (right). Note that the graph on the right is the same
as the KBm graph of the graph on the left.

Results

KB and KBm of ICB and IBG

•KBm(ICB) ⊂ PG.
Proof idea: Find a partial order ≤1 such that, for B1 6= B2, {B1, B2} ∈ E(KBm(G)) if and only
if B1 ≤1 B2 or B2 ≤1 B1, and a partial order ≤2 such that {B1, B2} 6∈ E(KBm(G)) if and only
if B1 ≤2 B2 or B2 ≤2 B1. That is, prove that KBm(G) is a comparability and a co-comparability
graph.

•KB(ICB) ⊆ PG2.
Proof idea: Corollary of previous item and the fact that KB(G) = (KBm(G))2 [4].

• For every H ∈ PG, there is a G ∈ IBG such that H ⊆ KBm(G).
Proof idea: Construct an interval bigraph G (constructing a bipartite interval model) from an interval
containment model C of H (as H is also an CGI) such that H ⊆ KBm(G).

Bipartite Graphs
Let G be a bipartite graph, then:

• If KBm(G) is AT -free then G is biAT -free.
Consequently, for some AT -free graph class A, KB−1

m (A) ∩ bipartite is biAT -free.
Proof idea: By construction, proving that if G has a bi-asteroidal triple then KBm(G) has an aster-
oidal triple.

•G is P4-free if and only if E(KBm(G)) = ∅.
Proof idea: By inspection of the possibilities of mutually included bicliques. If there is a pair of
mutually included bicliques then there is a P4 in G. See Figure 3 (left).

• If G is P5-free then there is no pair of vertex-intersecting bicliques.
Proof idea: By inspection of the possibilities of vertex-intersecting bicliques. If there is a pair of
vertex-intersecting bicliques then there is a P5 in G. See Figure 3 (middle).

•G is domino-free if and only if every pair of edge-intersecting bicliques are mu-
tually included.
Proof idea: By inspection of the possibilities of edge-intersecting bicliques that are not mutually in-
cluded. If there is a pair of not mutually included edge-intersecting bicliques then there is a domino
in G. See Figure 3 (right).

Figure 3: Edge types of bicliques that are: mutually included and a P4 (left), vertex-intersecting and a P5 (middle), and
edge-intersecting not mutually included and a domino (right).
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INTRODUCTION TO THE TOKEN SWAP (TS) PROBLEM
Let G = (V,E) be a graph with |V | vertices and |E| edges, with distinct tokens placed on it’s vertices.
The objective is to reconfigure this initial token placement called f0 : V 7→ V into the identity token
placement fi, that maps every node to itself, through a sequence of pairs of adjacent graph vertices that
swap the tokens between these vertices. The aim is to know if it is possible to have a swap sequence S
that achieve the objective in k or less swaps, with k ∈ N.
Applications of the TS problem encompass a wide range of fields. From computing efficient inter-
connection network structures, [1], computational biology [2, 3], modelling Wireless Sensor Networks
(WSS) [4], protection routing [5] to qubit allocation for quantum computers [6, 7].
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TOKEN SWAP AS A INTEGER LINEAR PROGRAM
The novel TS problem model given by Formulation (1)-(10) tests all possible configurations of the prob-
lem with a given upper-bound in the number of swaps T , allowing at maximum one swap per step
t ∈ [T ]. Each step is composed of a set of variables that describe the current configuration, which swap
is being selected and Equation 8 checks if a swap sequence solves the current instance. The constant
T can be calculated by using any of the best approximation algorithms, or by using the trivial upper-
bound O(n2) on the size of an optimal swap sequence. Binary variables xiut determine if a token i is at
node u in step t. The binary variables yuvt flags if a swap happened between nodes u and v in step t.

min
∑
∀uv∈E ,u<Mv,∀t∈[T ]

yuvt (1)

s.t.
∑
∀u∈V

xiut = 1 ∀t∈[T ],∀i∈V (2)
∑
∀i∈V

xiut = 1 ∀t∈[T ],∀u∈V (3)

xiut + xivt+1 ≤ yuvt + 1 ∀i∈V ,∀t∈[T−1],∀uv∈E , u <M v (4)
xivt + xiut+1 ≤ yuvt + 1 ∀i∈V ,∀t∈[T−1],∀uv∈E , u <M v (5)
xiut + xivt+1 ≤ 1 ∀i∈V ,∀t∈[T−1],∀uv/∈E (6)
∑
∀u,v∈V ,u<Mv

yuvt ≤ 1 ∀t∈[T ] (7)

xiiT = 1 ∀i∈V (8)
yuvt ∈ {0, 1} ∀t∈[T ],∀uv∈E (9)
xiut ∈ {0, 1} ∀i∈V ,∀u∈V ,∀t∈[T ] (10)

Some techniques are being used in this model to try to achieve a better overall performance, and they
will be explained in detail in future papers. The performance measurement, improvements and other
models for the problems of Colored Token Swap and Parallel Colored Token Swap are all
planned for future research. Note that the problem of Parallel Token Swap currently has a model,
but it was omitted here for the sake of conciseness. These models differentiate from the usual TS problem
by allowing swaps to be done in parallel or by removing the uniqueness property of a token, assigning
a color for a set of tokens instead of a single label.

TOKEN SWAP ON SPECIFIC GRAPH CLASSES

A Conflict Graph CGf := (V (G), ECG) is a di-
graph that, for a token placement f of a graph G,
an edge (u, v) ∈ ECG if and only if f(u) = v. Each
node has outdegre 1 and the digraph may contain
self-loops.
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Figure 1: Example of a cograph.

A cograph is defined recursively as follows:
a graph on a single vertice is a cograph; if
G1, G2, . . . , Gk are cographs, then so is their dis-
joint union; ifG is a cograph, then so is its comple-
ment G. A cotree T (G) of a cograph G = (V,E) is
a rooted tree representing it’s structure. The leaves
of T (G) are exactly V and each internal node is ei-
ther a 0-node and 1-node. The children of an 1-
node are 0-nodes or leaves and the children of a
0-node are 1-nodes or leaves. Two vertices are ad-
jacent in a cograph if and only if their lowest com-
mon ancestor is an 1-node.
We define CS(CGf ) = {C1, C2, . . . , Ck} as the set
of permutation cycles ofCG for f . LetC1 ⊆ CS be
the set of cycles that have a lowest common ances-
tor of all vertice pairs of V (C) as an 1-node in the
cotree or is a cycle of size one and letC0 = CS\C1.
The Cycle Matching Graph H of a cograph G has

each cycle on C0 as vertice set and two vertices
are adjacent if the lowest common ancestor of all
vertice pairs in the vertice union in T (G) is an
1-node. Let µ(H) be the maximum matching in
this graph. The following theorem implies the
polynomial time solvability of Token Swap for
cographs.
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Figure 2: Cotree and conflict graph joint representation.

Theorem. Let G be a cograph with an initial token
placement f0. The minimum number of required swaps
is given by |V (G)|+ |C0| − |C1| − 2× |µ(H)|.

This result came from two observations: Each in-
dependent cycle C ∈ CS can be solved in |C| + 1
or |C| − 1 swaps depending on whether this cycle
is part of C0 or C1, respectively. Also, it is pos-
sible to show that cycle interaction is restricted in
the best-case scenario and the best improvement
on swaps can be calculated on the value of the
maximum matching of the cycle matching graph
H . This behavior is also being used to find more
efficient algorithms in other graph classes like bi-
partite chain, wheel and gear.
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Consider a graph G = (V, E) and a subset C of V. The P3-convex hull (resp. P3*-convex 
hull) of C is obtained by iteratively adding vertices with at least two neighbors in C 
(resp. two non-adjacent neighbors in C). A subset S of V is P3-Helly-independent (resp. 
P3*-Helly-independent) when the intersection of the P3-convex hulls (resp. P3*-convex 
hulls) of S \ {v} (  ∀ v  ∈ S) is empty. The P3-Helly number (resp. P3*-Helly number) is 
the size of a maximum P3-Helly-independent (resp. P3*-Helly-independent).

The line graph L(G) of a graph G is the intersection graph of the edges of G, 
i.e.,V(L(G)) = E(G) and there is an edge between two vertices in L(G) if the edges they 
represent in G share a common endpoint. The edge counterparts of P3-Helly-
independent and P3*-Helly-independent of a graph follow the same restrictions applied 
to its edges instead of its vertices, i.e., the edge P3-convexity (resp. edge P3*-convexity) 
of a graph G is described by P3-convexity (resp.  P3*-convexity) of its line graph L(G).

Each vertex of a grid graph Gpxq are related to a pair (x, y) that defines its position on 
the grid with 1  x  p⩽ ⩽ , 1  y  q⩽ ⩽ . There is an edge between two vertices of a grid 
graph if they share a same coordinate x (or y) and the other coordinate differ only by 
one unit.

In this work, we established the edge P3*-Helly number of grid graphs Gpxq when both 
p and q are equal or larger than 16. Moreover, we give partial results on forbidden 
configurations of the edge P3-Helly independent sets of these grid graphs.

Introduction

Acknowledgment

We are currently trying to establish the edge P3-Helly number of grid graphs. Moreover, 
we want to extend this study to include the other two types of regular grids: the 
triangular grids and the hexagonal grids.

In [3] the authors established that the edge P3*-Helly number of a graph occurs between 
|V(G)|- ι (G) and |V(G)|-γ (G), where ι (G) is the minimum  independent dominating set 
and γ (G) is the minimum dominating set of a graph G. 

For grid graphs Gpxq with p ≥ 16 and q ≥ 16,  we have that ι (G) = γ (G). Moreover, the 
value of γ (G) is given by  ⌊(p+2)(q+2)/5⌋-4 [4]. Therefore, we know the P3*-Helly number 
of grid graphs Gpxq with p ≥ 16 and q ≥ 16. The other values for the cases when p < 16 
and q < 16 are computationally obtained. Now, we aim to use these values to obtain the 
edge P3*-Helly numbers when p < 16 and q ≥ 16 or p≥16 and q<16.

We also consider the edge P3-Helly independent of grid graphs by establishing several 
forbidden configurations that allow us to reduce the patterns of possible optimal solutions.
Note that in both cases 
(a) and (b), the edge 
P3 convex hull of the 
red edges without the
horizontal edge 
contains this edge.

 

There are many applications for graph convexity on distributed systems[7], social 
networks, and marketing strategies[6]. Moreover, the excelent survey [5]  describes 
several results of the Helly property on graphs.  The problem we address considers the 
Helly property on the edge P3-convexity and edge P3*-convexity of grid graphs.

The first results about the P3-Helly number on grid graphs appeared in [1]. Later, 
several results about P3-Helly number, P3*-Helly number and their edge counterparts 
were established in [2] and [3].

Figure 1: The red edges are an (a) edge P3*-Helly independent (resp. (b) edge P3-Helly-independent) set of a G3x3 and a G4x4 grid graphs 
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                                                      Figure 2: Two forbidden configurations for edge P3-Helly independent sets.
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Abstract
The recognition of biclique graphs in general is still open. In recent years we presented some result on the charac-

terization of biclique graphs of graphs of certain graph classes, along with the complexity associated to the recognition
problem. Those results introduced some intermediate operators, which we call now as “functors”. In this work we
summarize all those results and organize the different approaches using the functors.

Introduction
The biclique graph of a graph G, denoted by KB(G), is the intersection graph of the bicliques of G.
The biclique graph was introduced by Groshaus and Szwarcfiter [8], based on the concept of clique
graphs. They gave a characterization of biclique graphs (in general) and a characterization of biclique
graphs of bipartite graphs. The time complexity of the problem of recognizing biclique graphs remains
open.

Figure 1: Example of a biclique graph.

Bicliques in graphs have applications in various fields, for example, biology: protein-protein inter-
action networks, social networks: web community discovery, genetics, medicine, information theory.
More applications (including some of these) can be found in the work of Liu, Sim, and Li [10].

The efforts since the definition of the problem of recognizing biclique graphs, similarly to what have
been done for others graph operators, are mainly focused on understanding the class KB(A), for some
graph class A.

In this work we summarize what is known about recognition of KB(A) for a collection of graph
classes.

Classes Studied
• G: All graphs

• Gk: Graphs with girth at least k

• Pn: Path with n vertices

• Cn: Cycle with n vertices

• Kn: Complete graph of order n

• co-CG: Co-comparability graphs

• IIC-comparability: Interval intersection closed comparability graphs [6, 7]

• IIC-PG: IIC-Permutation Graphs = IIC-comparability ∩ co-CG [6, 7]

• IBG: Interval bigraphs

• HIB: Helly interval bigraphs [4]

• PIB: Proper interval bigraphs

• PIB-ASG: Proper interval bigraphs having acyclic simplification graph [1]

• PIG: Proper interval graphs

• 1-PIG: 1-Proper interval graphs [1]

• BBHGD: Bipartite biclique-Helly graphs with no dominated vertices [9]

• CHBDI: Clique independent Helly-bicovered with no dominated vertices graphs [9]
• NSSG: Nested separable split graphs [3, 5]

Operators and Functions
• G2: Square of graph G

• K(G): Clique graph of graph G

• KBm(G): Mutually included biclique graph of graph G [6, 7]
• L(G): Line graph of graph G

• leaves(G): Set of leaves (vertices of degree 1) of graph G

• S(G): Simplification graph of graph G [1]

Functors
The idea behind the techniques used in most of the results on KB(A) is to characterize KB(A) using
some other operator (or a composition of operators). That is, KB(G) = F(G), for G ∈ A and some
operator F .

We say that such scheme with more than one way to compute an operator is a “functor”.

Figure 2: Summary of known functors for KB.

• {K3,C5,C6}-free: KB(G) = K(G2) [9]
=⇒ KB({K3, C5, C6}-free) = K(({K3, C5, C6}-free)2)
Proof idea: Open neighborhood Helly, so there is a bijection between bicliques of G and cliques of
G2.

• girth at least k ≥ 5: KB(G) = (G− leaves(G))2 [1]
=⇒ KB(Gk) = (Gk)2, with k ≥ 5
Proof idea: Every bicliques is a maximal star, every vertex that is not a leaf is the center of a maximal
star (biclique) and to remove the leaves does not affect the girth.

• K3-free: KB(G) = (KBm(G))2 [6, 7]
=⇒ KB(K3-free) = (KBm(K3-free))2

Proof idea: Note that KBm(G) ⊆ KB(G) (same vertex set) and every pair of intersecting bicliques
in G are at distance at most 2 in KBm(G).

• PIB: KB(G) = (L(S(G)))2 [1]
=⇒ KB(PIB) = (L(PIB))2

Proof idea: S(PIB) = PIB, the edges of S(G) are bicliques of G, and every pair of intersecting
bicliques in G are at distance at most 2 in L(S(G)).

Table 1 summarize the results about recognition of biclique graphs of some graph classes.

class A KB(G), G ∈ A class KB(A) complexity
complete [1] L(G) L(complete) P
tree [1] (G− leaves(G))2 (tree)2 P (linear)
path (Pn) [1] ∅, for n = 1 (path)2 P (linear)

K1, for n = 2
(Pn−2)

2, for n > 2

caterpillar (tree) (G− leaves(G))2 (path)2 P (linear)
cycle (Cn) [1] K1, for n = 4 (cycle)2 −K4 + K1 P

(Cn)2, for n 6= 4

Gk, for k ≥ 5 [1] (G− leaves(G))2 (Gk)2, for k ≥ 5 P , for k ≥ 6
NP-complete,

(*) [2] for k = 5

IBG [1, 6, 7] OPEN ⊂ (IIC-PG)2 OPEN
⊂ K1,4-free co-CG

PIB [1] (L(S(G))2 (L(PIB))2 OPEN
PIB-ASG [1] (L(S(G))2 1-PIG P
HIB [9, 4] K(G2) ⊂ PIG ∩ (L(PIB))2 OPEN
{K3, C5, C6}-free K(G2) OPEN OPEN
[9]
BBHGD [9] OPEN CHBDI OPEN
NSSG [5] OPEN OPEN P
threshold [5] OPEN OPEN P
K3-free [6, 7] (KBm(G))2 ⊂ G2 OPEN
bipartite [6, 7] (KBm(G))2 (IIC-comparability)2 OPEN
G [9] OPEN Characterization OPEN

Table 1: At column “KB(G), G ∈ A” a brief description of KB(G); at column “class KB(A)”, class that is equal to (or a
super-class of) KB(A); at column “complexity”, complexity (if known) of recognizing KB(A).
(*) Note that to decide if G is the square of a graph of girth ≥ 5 is NP-complete [2].
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Abstract
A bipartite graph is a circular arc bigraph if there exists a bijection between its vertices and a family of arcs on a

circle such that vertices of opposing partite sets are neighbors precisely if their corresponding arcs intersect. The class
is a relatively unexplored subject, with most results on it and its subclasses being quite recent. In our work, we provide
a full exploration of the containment relations and intersections between seven subclasses of circular arc bigraphs.

Introduction
The class of Circular arc bigraphs is a bipartite variation of the class of circular arc graphs. A bipartite
graph G = (V,W,E) is a circular arc bigraph if there exists a bijection b : V ∪W → A such that A is a
family of arcs on a circle and two vertices v ∈ V,w ∈ W are neighbors if and only if b(v) ∩ b(w) 6= ∅.
Unlike its non-bipartite counterpart, circular arc bigraphs are a mostly unexplored topic of research,
with most results on it being relatively recent.

In 2013, Basu et al. [1] published matrix-based characterizations for the class of circular arc bigraphs,
as well as for the subclasses of proper circular arc bigraphs and unit circular arc bigraphs. In 2015,
Das and Chakraborty [2] presented a vertex order based characterization of proper circular arc bigraphs
and proper interval bigraphs. More recently, in 2019, Safe [4] presented a forbidden structure charac-
terization and efficient recognition algorithm for proper circular arc bigraphs.

In our work, we study seven different subclasses of circular arc bigraphs, and provide comprehensive
results on their pairwise comparability and containment relations.

Classes studied
The classes studied in our work are the following, defined in detail in the Definitions section.

• Circular Convex Bipartite (CCB) graphs, including its subclass of Doubly Circular Convex Bipar-
tite (doubly-CCB) graphs.

• Helly circular arc bigraphs, including its subclasses of non-bichordal Helly circular arc bigraphs
and Helly interval bigraphs.

• Proper circular arc bigraphs including its subclass of proper interval bigraphs.

Definitions
Assume a bipartite graph G = (V,W,E). We use N(v) and N [v] to denote the open and closed neigh-
borhoods of vertex v, respectively.

Proper family: no two elements in it are properly contained in one another.

Biclique: a maximal subset of V (G) that induces a bipartite-complete subgraph.

Bichordal: bipartite graph that does not admit any induced cycles of length greater than 4.

Non-bichordal: is not bichordal.

Twins: two vertices v, w ∈ V ∪W such that N(v) = N(w).

Circular arc bigraph (CAB): bipartite graph that admits a bijection b : V ∪W → A where A is a family
of arcs on a circle such that v ∈ V,w ∈ W are neighbors if and only if b(v) ∩ b(w) 6= ∅. Call such a
bijection a bi-circular-arc model of G.

Interval bigraph: a bipartite graph that admits a bijection b : V ∪W → A such that A is a family of
intervals on the number line, and v ∈ V,w ∈ W are neighbors if and only if b(v) ∩ b(w) 6= ∅. Call
such a bijection a bi-interval model of G.

Circular convex bipartite (CCB): a bipartite graph that V can be circularly ordered such that for ev-
ery w ∈ W , N(w) is an interval in the order. Call such an order a CCB order of V . Graph G is
doubly-CCB (D-CCB) if both V and W partite sets admit such an order.

Proper circular arc bigraph (P) (resp. proper interval bigraph (PI)): a bipartite graph that it admits a
bi-circular-arc (resp. bi-interval) model b such that b(V ) and b(W ) are proper families.

Helly circular arc bigraph (H) (resp. Helly interval bigraph (HI)): a bipartite graph that it admits a
bi-circular-arc (resp. bi-interval) model b such that, for every biclique K ⊂ V ∪W , there exists a
point p on the circle (on the number line) such that p ∈ X for all X ∈ b(K). Call such a model a
Helly bi-circular-arc (resp. Helly bi-interval) model of G.

Non-bichordal Helly circular arc bigraph (NBH): a non-bichordal Helly circular arc bigraph.

Findings

Figure 1: The Venn diagram of the classes studied, with an example graph in each region.

• CCB ⊂ CAB
Proof idea. In a bi-circular-arc model b, attribute to the vertices of V pairwise disjoint arcs on the
circle ordered according to the circular order of the vertices. For every w ∈ W , there is an arc that
intersects every arc in b(N(w)) and no arcs in b(V )− b(N(w)).

• P ⊂ D-CCB
Proof idea. Let b be a bi-circular-arc model of G such that b(V ) and b(W ) are proper families. The
clockwise order of the beginning points of the arcs in b(V ) (resp. b(W )) is a CCB order.

• H ⊂ D-CCB

Proof idea. Let b be a Helly bi-circular-arc model of G. For every v ∈ V (every w ∈ W ) there is
a biclique Kv (Kw) that contains N [v] (N [w]). For each of those, there is a point pv (pw) on the
circle that every arc in b(Kv) (b(Kw)) contains. The clockwise order of the points in {pv|v ∈ V }
({pw|w ∈ W}) is a CCB order.

• NBH ⊂ P

Proof idea. In [3], we show that every twin-free NBH graph is an induced subgraph of a restrictive
set of graphs. It is possible to show that every graph of that set is P.

• HI ⊂ PI

Proof idea. In [3], we show that every twin-free HI is an induced subgraph of a restrictive set of
graphs. It is possible to show that every graph of that set is PI.

• H and P are uncomparable.

Proof idea. The Venn diagram has examples of a P graph that is not H, and vice-versa.

Conclusion
We provided a comprehensive study of the relationship between seven different subclasses of circu-
lar arc bigraphs. We showed that doubly CCB graphs, a proper subclass of circular convex bipartite
graphs, are a proper superclass of both Helly and proper circular arc bigraphs. We also showed that
non-bichordal Helly circular arc bigraphs are a proper subclass of proper circular arc bigraphs, and that
Helly interval bigraphs are a proper subclass of proper interval bigraphs. We also showed that proper
and Helly circular arc bigraphs, which contain a non-empty intersection, are not comparable.

The results provide a full understanding of the containment hierarchies of the classes mentioned, al-
lowing us to present a comprehensive Venn diagram of them.

Future Research
Future research includes looking into relationships between other subclasses of circular arc bigraphs,
such as unit circular arc bigraphs (graphs that admit a bi-circular-arc model such that all arcs are of
the same length), cross-proper circular arc bigraphs (graphs that admit a bi-circular-arc model where
no two arcs corresponding to vertices of opposing partite sets are comparable), and normal circular arc
bigraphs (graphs that admit a bi-circular-arc model where no union of two arcs equals the entire circle).

It also includes looking into the recognition problems of circular arc bigraphs, and any important
subclasses of circular arc bigraphs for which no efficient recognition algorithm is known.

References
[1] Asim Basu, Sandip Das, Shamik Ghosh, and Malay Sen. Circular-arc bigraphs and its subclasses.

Journal of Graph Theory, 73(4):361–376, 2013.

[2] Ashok Kumar Das and Ritapa Chakraborty. New characterizations of proper interval bigraphs and
proper circular arc bigraphs. In Sumit Ganguly and Ramesh Krishnamurti, editors, Algorithms and
Discrete Applied Mathematics, pages 117–125, Cham, 2015. Springer International Publishing.

[3] M. Groshaus, A. L. P. Guedes, and F. S. Kolberg. On the helly subclasses of interval bigraphs and
circular arc bigraphs. In Proceedings of the 14th Latin American Theoretical Informatics Sympo-
sium, São Paulo - SP, Brazil, 2020.

[4] Martı́n D. Safe. Circularly compatible ones, d-circularity, and proper circular-arc bigraphs. ArXiv,
abs/1906.00321, 2019.



[1] F. COUTO; L. F. I. CUNHA; D. FERRAZ. Determining optimum tree t-spanners for split graphs and cographs. 
VIII Latin American Workshop on Cliques in Graphs, p.10, 2018.
[2] L. CAI ; D. G. CORNEIL. Tree spanners. SIAM J. Discrete Math., 8(3):359–387, 1995.
[3] F. COUTO; L. F. I. CUNHA. Hardness and efficiency on minimizing maximum distances for graphs with few 
P4’s and (k,l)-graphs. Electronic Notes in Theoretical Computer Science, 346:355–367, 2019.
[4] F. COUTO; L. F. I. CUNHA.; D. POSNER. Edge tree spanner, CTW 2020. 1-12, 2020.

Efficient characterizations and algorithms of 
tree t-spanners

Fernanda Couto – UFRRJ – fernandavdc@ufrrj.br,  Luís Felipe I. Cunha – UFF – lfignacio@ic.uff.br, 
Diego Amaro Ferraz –UFRJ – ferrazda@cos.ufrj.br

The t-admissibility problem has been widely studied specially because 
determining if a graph G is 3-admissible is still an open problem since it was 
proposed [2]. Although recognizing if a graph is 2-admissible is a 
polynomial time solvable problem, we realized  that for some classes could 
be easier. Hence, in this work we present simple and efficient algorithms in 
order to characterize 2 and 3-admissible graphs for some graphs classes as 
cographs, split graphs, P4-sparse and other superclasses.
     

Introduction

A tree t-spanner of a graph G is a spanning tree T of G in which the distance 
between adjacent vertices of G is at most t in T. In this case, we say that G is a 
t-admissible graph and the t-admissibility problem concerns in deciding if G is 
t-admissible. The minimum t for which G is t-admissible is the stretch index of G. 

In addition to the results presented above, we determined  linear time algorithms to 
check 2-admissibility for P4-tidy graphs, graphs that generalize P4-sparse graphs, as 
described above. 

We also considered the t-admissibility problem for a superclass of (0,2)-graphs, the 
(k,l)-graphs. Specifically: split graphs (i.e. (1,1)-graphs) and (0,l)-graphs. We 
presented linear time algorithms to verify the existence of a tree 2-spanner.

As future work, we intend to extend this study to other graph classes and to deal 
with a recent study that is a variation of t-admissibility, called edge admissibility [4], 
concerning in obtaining a spanning tree of the line graph of G in which the distance 
between adjacent edges of G is at most t.

We present a linear time algorithm to decide 2-admissibility for P4-sparse graphs. 
The algorithm consists in verifying the existence of a universal vertex and if the 
given graph is a thin spider. For this second part, we calculate its spider partition (S, 
K, R) and check the degrees of the vertices in order to differ the thin form the thick 
spider (Figure 2), which is not 2-admissible.

Considering (0,2)-graphs (graphs that can be partitioned into 0 independent set and 
2 cliques) we also present a linear time algorithm to check the 2-admissibility. 
Given a (0,2)-graph G, G is 2-admissible if and only if G has a universal vertex, a 
cut-vertex or between the parts of the (0,2)-partition is a strict 2-connected graph that 
has not an induced C4.

2-admissible P4-sparse graphs and (0,2)-graphs

Tree t-spanners

Further work

References

Deciding whether G is 2-admissible can be solved in O(n+m) time, where n and 
m are the number of vertices and edges of G, respectively. t-admissibility is 
NP-complete for t ≥ 4, and 3-admissibility remains an open problem.

Our goal is to provide simple and fast characterizations of tree t-spanners for 
graph classes in order to check 2- or 3-admissibility for them. 

3-admissibility has been already efficiently solved for some graph classes, such as 
cographs, split graphs, cycle-power graphs and (2,1)-chordal graphs [1,3].

For P4-sparse graphs (graphs obtained from trivial graphs, by applying in any order 
union, join and spider operations), we have that, if G is not a thin spider (Figure 1) 
and has not a universal vertex, its stretch index is equal to 3. 

Moreover, given a P4-sparse graph G, G is 2-admissible if and only if either G has 
universal vertex; or G is a thin spider. 

Figure 1: Thin spider graph and its tree 2-spanner T. Two parallel lines represent a join operation between the 
touched parts. Each vertex in the spider's body is connected to all other vertices in the spider's body and the 
vertices on the spider's head R. Thus there is a spanning star with respect to the body and R. Since spider's paws 
have degree one, we make them pendant in T, and then, the stretch index is equal 2.

Figure 2: Thick spider graph and its tree 3-spanner. Two parallel lines represent a join operation between the touched 
parts. Dashed lines represent non-edges. Since each spider's paw is adjacent to all vertices of the body, except one, 
there is a spanning star with respect to the body and the head R with any vertex v of the spider's body as the center of 
the star. The paw that is not adjacent to v is placed in any of the leaves of the spider’s body. And, thus, the stretch 
index of the graph is 3.
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Abstract
In this poster we present some recent results about
the Hamiltonicity of the 2-token graph F2(G) and
the 2-multiset graph M2(G) of some fan graphs
G. In particular, we exhibit an infinite family of
graphs for which F2(G) and M2(G) are Hamilto-
nian.

Introduction
As far as we know, token graphs have been de-
fined, independently, at least four times since 1988.
Since then, several combinatorial parameters of to-
ken graphs have been studied, such as connec-
tivity, regularity, planarity, Hamiltonicity, Euleri-
anicity, and, chromatic, clique, independence and
packing numbers; as well as their automorphism
group and spectrum. Also, several connections
between token graphs and other research areas
have been discovered, such as Quantum Mechan-
ics and Coding Theory. For example, token graphs
model the following system in Quantum Mechan-
ics: consider a cluster of n interacting qubits (two-
level atoms) represented by a graph G (where the
qubits are interacting via an (excitation)-exchange
Hamiltonian), in which, at each moment, exactly k
qubits are in the excited state and the remaining in
the ground state; this system corresponds to the k-
token graph of G. In Coding Theory, the packing
number of the k-token graph of Pn corresponds to
the largest code of length n and constant weight k
that can correct a single adjacent transposition; also
the k-token graph of the Complete graph Kn is iso-
morphic to the Johnson graph J(n, k), which have
several applications in Coding Theory. Besides, to-
ken graphs have been used to study the Isomor-
phism Problem of Graphs.

Motivation
Besides the possible applications of token graphs,
one of our motivations to study the Hamiltonicity
of token graphs was to extend our result of 2018
[5]:

Theorem 1 If n ≥ 3, and 1 ≤ k ≤ n − 1, then the
k-token graph of the fan graph F1,n−1 is Hamiltonian.

Definitions
For two disjoint graphs G1 and G2, the join graph G = G1 + G2 of graphs G1 and G2 is the graph whose
vertex set is V (G1)∪V (G2) and its edge set is E(G1)∪E(G2)∪{uv : u ∈ G1 and v ∈ G2}, a simple example
is the fan graph Fm,n = Em + Pn, where Em denotes the graph of m isolated vertices and Pn denotes the
path graph of n vertices.
Let G be a simple graph of order n. The k-token graph Fk(G) of G is the graph whose vertices are the k-
subsets of V (G), where two of such vertices are adjacent if their symmetric difference is a pair of adjacent
vertices in G. The k-multiset graph Mk(G) of G is the graph whose vertices are the k-multisubsets of V (G),
and two of such vertices are adjacent if their symmetric difference (as multisets) is a pair of adjacent vertices
in G. See an example of these constructions in the figure below. The 2-token graph is usually called the
double vertex graph and the 2-multiset graph is called the complete double vertex graph.
A Hamiltonian path (resp. a Hamiltonian cycle) of a graph G is a path (resp. cycle) containing each vertex of
G exactly once. A graph G is Hamiltonian if it contains a Hamiltonian cycle.

Previous results
It is well known that the Hamiltonicity of G does not imply the Hamiltonicity of Fk(G). For example it
is know that if n = 4 or n ≥ 6, then F2(Cn) is not Hamiltonian. On the other hand, there exist non-
Hamiltonian graphs for which its double vertex graph is Hamiltonian, for example F2(K1,3) is Hamilto-
nian. Next, we list the known results about the Hamiltonicity of Fk(G) or the existence of a Hamiltonian
path in Fk(G), when k may be greater than two.

• If n ≥ 3 and 1 ≤ k ≤ n− 1, then Fk(Kn) is Hamiltonian, see for example [3].

• If m ≥ 2, then Fk(Km,m) has a Hamiltonian path if and only if k is odd [4].

• If G is a graph containing a Hamiltonian path and n is even and k is odd, then Fk(G) has a Hamilto-
nian path [4].

• If n ≥ 3 and 1 ≤ k ≤ n− 1, then Fk(F1,n−1) is Hamiltonian [5].

In addition to these results, the following are some known results for the double vertex graph (k = 2).

• F2(Cn) is non-Hamiltonian [2].

• If G is a cycle with an odd chord, then F2(G) is Hamiltonian [2].

• F2(Km,n) is Hamiltonian if and only if (m− n)2 = m+ n [2].

More results about the Hamiltonicity of double vertex graphs can be found in the survey of Alavi et. al. [1].

Results
These results were obtained by Luis Adame and
the authors of this poster.

Theorem 2 Let m ≥ 1 and n ≥ 2. Then, F2(Fm,n) is
Hamiltonian if and only if m ≤ 2n, and M2(Fm,n) is
Hamiltonian if and only if m ≤ 2(n− 1).

This theorem implies the following result.

Corollary 3 Let G1 and G2 be two graphs of order
m ≥ 1 and n ≥ 2, respectively, such that G2 has a
Hamiltonian path. Let G = G1 + G2. If m ≤ 2n then
F2(G) is Hamiltonian, and if m ≤ 2(n−1) then M2(G)
is Hamiltonian.

Open Questions
1. To study the Hamiltonicity of Fk(Fm,n) and

Mk(Fm,n), for k > 2.

2. Given two graphs G and H , to study the
Hamiltonicity of Fk(G�H) and Mk(G�H).

3. To find other families of non-Hamiltonian
graphs for which their k-token graph and k-
multiset graph are Hamiltonian.

4. What is the smallest Hamiltonian graph G for
which Fk(G) and Mk(G) are Hamiltonian?
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