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Unitary Cayley graphs

For a positive integer n, the unitary Cayley graph X,, =
Cay(Zy, U,,) is defined by the additive group of the ring Z,, of in-
tegers modulo n and the multiplicative group U,, of its units, where
U, = {a € Z, : gcd(a,n) = 1}. The vertex set of X, is
the set V(X,,) = Z, = {0,1,--- ,n — 1} and its edge set is
E(X,) = {ab: a,b € Z, and gcd(a — b,n) = 1}. The uni-
tary Cayley graphs X, are regular of degree |U,,| = ¢(n), where
¢(n) is the Euler function.

Total coloring

A k-total coloring of G 1s an assignment of k colors to the edges
and vertices of G, such that no adjacent elements (vertices and
edges) receive the same color. The total chromatic number of G,
denoted by x7(G), is the least k for which G has a k-total color-
ing. Let A(G) be the maximum degree of G, clearly, x7(G) >
A(G) + 1 and the Total Coloring Conjecture (TCC) [1, 6] states
that x7(G) < A(G) + 2. This conjecture has been verified for
some classes but the general statement has remained open for more
than fifty years and has not been settled even for regular graphs.
If x71(G) = A(G) + 1, then G is said to be Type 1, and if
x7(G) = A(G) + 2, then G is said to be Type 2. The problem
of deciding if a graph 1s Type 1 has been shown NP-complete [5].

For more information, we refer to [3], which 1s the first PhD thesis
on total coloring developed 1n Brazil.

Total coloring of unitary Cayley graphs

Prajnanaswaroopa et al. [4] established the TCC for all unitary
Cayley graphs. Some unitary Cayley graphs are already known to
be Type 1 or Type 2. It n = p" i1s a prime power, then X, 1S
a complete p-partite graph and the total chromatic number 1s well
known: if p is odd, then X - 1s Type 1, and if p 1s even, then X - 1s
Type 2 [3].

We determine the total chromatic number of all members of two

families of unitary Cayley graphs X,,: when n = 6s, for a positive
integer s, and when n = 3p, for prime p > 5.

Boggess et al. [2] proved that for n > 3, graph X, can be decom-
posed 1nto @ edge-disjoint Hamiltonian cycles, denoted by H 7{,
with 3 € U,,; and this result 1s used to prove the following theo-
rems. Consider directed edges {(2,2 + 7 mod n) : 0 < 7z <
n — 1} to indicate the direction used to construct the cycles H?, as

H’ and H ™/ are the same cycle.

Theorem 1. For positive integer s, the graph Xgs is Type 1.

Proof. Graph Xg; is bipartite with parts A = {22 : 0 < ¢ <
=2} and B = {2¢+1: 0 < ¢ < ®-2}. Consider the Hamilto-
nian cycle H és, since 1t has 6s vertices, 1t 1S well known that admits
a 3-total coloring 1" such that vertices z, withz = 0 mod 3 (resp.
1 =1 mod 3 and 1 = 2 mod 3) receive the same color. As
3 & Ugs, the adjacent vertices in X g5 do not have the same color as-
signed by T'. Now, remove from Xg; all the edges in Hj, . Clearly,
the resulting bipartite graph is (A (Xgs) — 2)-regular and, by Hall’s
theorem, it can be edge colored with A(Xjgs) — 2 colors. There-

fore, Xgs 1s Type 1. The following figure presents a S-total coloring
of X 12.
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Theorem 2. For prime p > 5, the graph X3, is Type 1.

Idea of the proof. Graph X3, 1s a 3-partite graph with parts A =
{31 :0<:<p—1},B={3t14+1:0< 1< p-—1}and
C ={3i+2:0< i< p— 1}. By Vizing’s theorem, each
Hamiltonian cycle H gp admits a 3-edge coloring. For 3 > 1, as-

sign 3 colors to the edges of every H gp such that a special color cg 1s
used in all cycles in a particular directed edge (a,a+37 mod 3p),
and the endpoints {a,a + 7 mod 3p} receive 2 different colors
already used 1n the respective cycle. For 3 = 1 € Us,, assign 3

colors to the edges of H ?}p so that the special color ¢g 1s assigned to
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exactly 3 directed edges: (1, 2), (4,5), (7, 8); and the endpoints
{1,4,7} € B and {2,5,8} € C receive the 2 colors already
used 1n the respective cycle, one color to each part. The remaining
vertices not colored in X3, are in part A, and we assign color ¢y to
these vertices.

Notice that the assignment of colors does not have conflict. We
used 2 colors for the elements of each of the p — 1 Hamilto-
nian cycles and used color ¢y 1n all cycles. Thus, we obtain a
2(p — 1) +1 = A(Xsp) + 1-total coloring. The figure below
presents the four edge-disjoint Hamiltonian cycles Hg , H3 , Hy
and H gp of X5 with a 9-total coloring such that the color ¢y 1s
represented by purple color.
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Introduction

This research contains as a main result the proof that every Chordal B1-EPG
graph 1s simultaneously In the VPT and EPT graph classes. In
addition, we describe a set of graphs that defines Helly-B,-EPG families. In
particular, this work presents some features of non-trivial families of graphs

properly contained in Helly-B, EPG, namely Bipartite, Block, Cactus and Line of

Bipartite graphs.

Objective

In this work we will mainly explore the EPG graphs, In particular B,-

EPG graphs. However, other classes of intersection graphs will be studied
suchas EPT and VPT graph classes.

Definitions and Technical Results

« Agraphis a B,-EPG graph if it admits an EPG representation in which each path
has at most k bends;

* When k =1 we say that this is a single bend EPG representation or simply a B;-
EPG representation;

* In a B;-EPG representation, a cligue K can be edge-clique or claw-clique [3].

P, ——— P, P, | Py

P

Pc

Figure 1: Representation of a clique as edge-clique and as claw-clique.

* Acollection of sets satisfies the Helly property when every pairwise intersecting
sub-collection has at least one common element;

* When this property Is satisfied by the set of paths used In a representation, we get
a Helly representation;

 Helly-B,-EPG graphs were studied in [2];

 EPG, EPT and VPT representations arise in circuit layout problems and layout opt
Imization [4];

 VPT and EPT graphs are the vertex-intersection and edge-intersection graphs of
paths on trees, respectively;

* VPT and EPT graphs are incomparable families of graphs.

Subclasses of Helly-B1-EPG Graphs

Theorem 1: Let G be a B,-EPG graph. If G Is {S;, S3, S3+, C,}-free then G Is a Helly-
B,-EPG graph.

(a) Claw with paths. (b) Subgraph induced by paths.

Figure 2: Reconstruction of intersection model.

An AN AN Q

Figure 3: Graphs on statement of Theorem 1: S;, S5, S5+, C,.

» Bull-free graphs are {S;, S;, Ss.}-free, so these results implies in results of [1].

Theorem 2: If the graph G is B,-EPG and diamond-free then G Is Helly-B,-EPG.
Corollary: Bipartite, Block, Cactus and Line of Bipartite graphs are Helly-B1-EPG.

Relationship among Chordal B1-EPG, VPT and EPT graphs

Theorem 3: Chordal B;-EPG & VPT. Theorem 4: Chordal B;-EPG &< EPT.

Figure 4: Graph S, and one of its possible VPT and EPT representations.
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INTRODUCTION THE HYBRID MATHEURISTIC s
This work presents a hybrid exact-heuristic algorithmic The Hybrid Matheuristic (MathGLS-IP) is based on two steps: j o
approach, based on an arc-time indexed mixed-integer - STEP 1: Heuristic approach (GLS) A
programming formulation and a generalized evolutionary based on The best local optimal solution generated by the GLS 5[ 2,
a strong local search, In order to better solve the problem  (Figure 2) is kept in a Hash Table on every generation, 6| x4
Pl| X a;E_j + B; T; (WET). The selected arcs from local optimal  which will be used as a selected set of arcs to the IP Arc- 7| %0
solutions generated by a Genetic Algorithm based on a strong  time formulation. A solution representation of the Arc-time i x§3
Local Search (GLS), are given as input to an IP Arc-time indexed s presented in Figure 3. 12 e
formulation, which is solved to produce better solutions at CPLEX. Current New  Hash Table N
_ oo _ Populatlon Population o "
The proposed Hybrid Matheuristic method Is capable to produce F EEREEE REREREE N
- - - T C +Local Search [ i i i i 1] F b
Petter results when Compared with the Previous best results In the NS S | rOROvEr D S S T j; Figure 3: (a) Parallel machine network flow representation for the solution in Figure 1 (c) and the st(or)ed arcs
Iterature. R T e et AW dividual 1 Individual 2 s s SET SET SRR I B from this solution in a hash table presented in (b) (we keep a set of stored solutions - not only one solution).
OBJECTIVE R e A e = I >
ceedede bl A
The objective of this work Is to develop an exact-heuristic Method  j-t=i—k—t=oei=icp - =< i'J'ﬁE_JS'L""J']/ e COMPUTATIONAL EXPERIMENTS .
to solve large instances of the the identical parallel machine |~ i B E In Table 1 we present a resume of the computational experiments,
Weighted Just-in-Time Scheduling Problem. T S| ofm]  compared with the literature. MathGLS-IP solves large instances up to
I Local Search 1 el 500 jobs and 2, 4 and 10 identical parallel machines. Our method

Figure 2: GLS - Crossover operation followed by local search, where the best local optimal
solution of every generation is kept in a Hash Table.

- STEP 2: Exact approach (Solving the Arc-time)
When GLS procedure finishes, the selected arcs kept in

JUST-IN-TIME SCHEDULING PROBLEM

Considering the classical NP-hard parallel-machine weighted
earliness-tardiness  scheduling problem, P|[YX a;E;+Y.B;T;

also presents results for 200 instances, not yet known in the literature,
and improved 4. Detailed results can be observed at Amorim [4].

Table 1: Computational Experiments compared with the Literature for the problem P|[Y.a;E; + Y. 8,T; with
40, 50 and 100 jobs on 2-10 machines.

(WET), in 3-field notation [1], where j = {1, ...,n} is the set of the Hash Table are used to build the Arc-time, and then, Kramer and Subramanian [5] MathGLS-1P
independent jobs to be processed without preemption, in m  solve it in CPLEX to get better convergence or Improve nstance group GABgst run GAﬁverage GAF?est run GAﬁverage
identical parallel machines, where each one can process at least  the solution for a given instance of the problem. The Arc- ) BKS g TMe® o 7 () Time(s)
one job on a given time. Every job j has a positive processing time  time indexed formulation, proposed by Pessoa et al. [3], IS~ wet40-2m 0,000 12 0,000 5592 0000 24 0 0001 6420
i : - S wet40-4m 0,000 12 0,001 6,258 0,000 24 O 0,001 9,261
p],_a due date d]_ and a p0_3|t|\_/e ear_llness («j) and tardiness (B;) presente_d bellOV\{. The MathGLS-IP method ellmlnate_s the o a010m 0000 5 0000 4080 0000 25 0 0002 8882
weights. The earliness of a job is defined as E; = max{0; d; — C;}  Constraints (4), in order to decrease the number of binary ~ wetso-om 0000 11 0001 12617 0000 23 0 0000 13,623
and the tardiness of a job is defined as T; = max{0; ¢; — d;}, variables of idle time at the end of a scheduling. V\Cveetfoo_-l‘lof:‘n 8888 152 83(1)2 194,312405 8888 ;i 8 88%1 gggg
o : : ' : , Every job must be visited by ] | | ’ | | ’
where C; Is the com_pletlon time of the job [2]. Figure 1 (a) prese_nts 20(].5_] + Y8 T, xactly one path ﬂiﬁggirm“ 8(7)88 162 8%2 183;‘33 8888 2431 2 8822 isgcl)gg
an example of 8 jobs for the problem followed by a solution rp | Wetl00-10m 0161 0 0227 140380 0089 8 0 0332 102153
representation for single machine scheduling in Figure 1 (b) and itS  Minimize Z z z fi(t+p)x (1) Total S . 200 4
corresponding representation for identical parallel machines in TN = Define the network flow of Average 0106 - 0157 61,243 0010 - -- 0049 50,024
Figure 1 (c), considering three identical parallel machines. "N xl—1 (vjeg) munitsoveranacyclic |y oo~ Amountof BestitnownSolutions in the literature - Amount of improved solutions
s.t. ij J lavered NG = (VA # — Amount of solutions equal to BKS
. . . . S— g5 yere g/rap =(V,A)
i 3 3 3 5 3 0 0 0 0 .’2 £ f“- t P _ v 3 REFERENCES
; 0 4 2 4 1 z Xji — 2 xi]' - ( ) LIGRAHAM, R. L.; LAWLER, E. L.; LENSTRA, J. K.; and RINNOOY KAN, A. H. G. Optimization and approximation in deterministic
I 6 5 0 16 0 (b) Ay Ay . . . |
. jeJ\li}, JeJ L\{i}, sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287-326, 1979.
Jj 3 6 8 8 3 3 0 24 0 Eliminated t—p;jz0 t+pi+p;<T PIPINEDO, M. L. Scheduling: Theory, algorithms, and systems. Springer Publishing Company, Incorporated, 4a ed.:1-104, 2012.
- T — . T — _ eIt = —D. BIPESSOA, A.; UCHOA, E.; ARAGAO, M. P. de; and DE FREITAS, R. Exact algorithm ov -time-indexed formulation f llel
],4 ) ’ ° 10 ° ) : ) 12 ZBJT‘] 57 ZOCJE]_I_ZBJTJ B3l Constraints (Vl E]’ ‘ 0.1 pl) machine scheduling problems. Mathematical Progrirr?r%ing Computation,2(3-46;(:355619?%8, ;noi)o.er o efe-imesindexed Tormutefion Tor paralle
J5s 6 6 6 4 9 0 3 0 27 P _ N z t z t+1 _ —0 T —1 4 4T AMORIM, R. Estratégias Algoritmicas Exatas e Hibridas para Problemas de Escalonamento em Maquinas Paralelas com Penalidades de
je 7 10 7 3 10 0 0 0 0 : : N x]'O - ij — (t — 4 ) ( ) Antecipacéo e Atraso. Tese (Doutorado em Informatica), 2017.
: Pl )2 J4 - JEJ +, JEJ +, BIKRAMER, A.; SUBRAMANIAN, A. A unified heuristic and an annotated bibliography for a large class of earliness—tardiness scheduling
j7 3 11 4 2 10 1 0) 4 0) . . _ t—pj=0 t+p;+1<T problems. Journal of Scheduling, 22(1): 21-57, 20109.
js 3 8 5 8 12 0 4 0 48 L
Yo Ej =44 and Y B;T; =87 0125345678 0910111213 Binary 2 x8,- =m (5) ACKNQ(’)WLEDGMENT
@) (©) variables JEJ + A ﬁ
Figure 1: (a) An instance example of 8 jobs for the weighted tardiness and earliness-tardiness scheduling \ xfj €Z, (vie]J,;vje]{it=p;...,T —pj) (6) ﬁc OM P % % a5
problem. Scheduling examples for the (b) identical parallel machines using machine-oriented Gantt xto€Z, (£=0,...T—1) (7) _ ” Unversidade FAPEAM
chart and (c) the single sequence representation. 00 - ~+ Vv v instituto de Computagao ICET Fluminense CAPES Fndag do Ampar e
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Introducao

Ha diversas aplicacoes para as Redes de Sensores sem Fio(RSSF): monitoramento de sinais
ambientais[1], aplicacoes militares[2], entre outras. Neste trabalho, investiga-se o problema
de Planejamento de Redes de Sensores Sem Fio (PRSSF-MOD), onde a rede é formada por
multiplas origens (sensores) e multiplos destinos (sorvedouros). A topologia da rede e
representada atraves de um grafo e na resolucao do problema proposto, iremos definir um
modelo de Programacao Linear Inteira (PLI) e uma grafo auxiliar que sera utilizado junto ao
modelo.

Objetivo

O objetivo deste trabalho é minimizar o numero de sensores da topologia da rede em uma
dada regiao de interesse, de modo a atender as conexoes entre multiplas origens e destinos.

Definicao do problema

Dado um conjunto S de sensores, onde para cada s € S é associado um conjunto {sifi=1..k,
um raio de comunicacao r, um custo de alocacao ¢ e um conjunto P de origens e destinos
p={op,dp}. Utilizando essas informacoes pretende-se construir uma topologia TCS que
conecte todos os pares de origens destinos p={op,dp/, de forma direta ou por multiplos saltos

entre sensores intermediarios, de modo a minimizar o custo de instalacao da rede.

Modelo PLI e grafo auxiliar

Para resolver o problema foram definidos um modelo PLI[3] (Figura 1) e um grafo
auxiliar G=(V,E) (Figura 2), onde V e definido pelas possiveis posicOoes de S e vértices
artificiais A que representam origens e destinos e E compreende as arestas definidas pela
interseccao entre os raios de comunicacao dos sensores em diferentes grupos. Para finalizar a
aplicacao sao adicionadas arestas entre os nos artificiais de origem e destino e seus
respectivos grupos de sensores.

Imin Z Cili -,
o}
s.t. Z Lii = Z 2 = by VieV,peP, (1)
(1,j)€0% (1) (j:1)€6 (i)
Z Yo < 1, VieS (2)
acC(i)
ri; < Vi Y(i,j)€e E,peP  (3)
z7: < Yy Vii,j)e E,pe P  (4)
U = l, Vi € A (FI)
Jf; € {0,1} V(i,j) e E.pe P  (6)
y; € {0,1} VieV (7)
where
[ -1 ifi= s ) .
bt ¢ 1 iti=o, (8) 3 3
0 otherwise.

Figura 1: Modelo PRSSF-MOD

Figura 2. Grafo auxiliar

Restricao (1) garante a existéncia de um caminho entre origens e destinos, Restricao (2)
garante que apenas uma posicao dentre as candidatas sera escolhida, (3) e (4) representam que
uma aresta sO pode ser usada se existe um sensor naquela posicao e a Restricao (5) define que
todo no artificial esta na solucao.

Experimentos computacionais

Os experimentos computacionais se baseiam na instancia real do intel lab data[4], que
possul 54 sensores de monitoramento ambiental. Os grupos de possiveis posicoes e as origens
e destinos de cada experimento estao apresentadas abaixo.

2 5 2 D g
Figura 3(b): Instancia com 27 possivels Sensores e
10 Origens e Destinos

Figura 3(a): Instancia com 27 possiveis Sensores e
5 Origens e Destinos

e ©

ol |

|

R
)

Figura 3(d): Instancia com 9 possiveis Sensores e
2 Origens e Destinos

5 Origens e Destinos

Os experimentos foram executados em um Core 15 2.3 GHz, 16 GB de RAM, implementados
em C++ usando CPLEX e compilados no gcc 9.3.0. Foram necessarios, no maximo, 14
segundos para a execucao das instancias, o que demonstra a viabilidade da solucao proposta.

Conclusoes

Este trabalho apresentou uma versao modificada do PRSSF que considera multiplas origens
e destinos. O modelo foi avaliado em uma instancia real e obteve uma reducao na quantidade
de sensores de 25% utilizados na topologia.
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The random walk on the Tower of Hanoi

The tower of Hanoi puzzle is a single-player game where at each turn the player moves
a disk to a tower that is different from the one it previously was. The game does not allow
a disk above smaller disks and its aim is to move all disks from a tower to another one
(see Figure 1).

Figure 1: Tower of Hanoi with 4 disks.

The Hanoi graph H,, = (Vin, ) is the graph whose vertices represent the possible
configurations of the tower of Hanoi puzzle with 3 towers and m disks. Its edges represent
the moves between these configurations. Thus, H; is isomorphic to a triangle and for
each m > 2 we can construct H,, in the following way which is illustrated in Figure 2: we

consider three isomorphic copies of #,,_; and we label them as H = (VI [ EL ),
1 € {1,2,3}. Foreach i € {1,2,3} let v}, vl, and v’, be the vertices on the top, on the
left, and on the right of the basis of the biggest triangle in .. The graph H,, is the
graph with vertex set V;,, = U3_ 1VZ -1 and edge set E,, = (U_,E' ) U E}5,, where EY, is

defined as £, := {{vlb, Utop} {Urb’ vtOp}, {U?bv v?b}}.

Figure 2: Graphs H,,, form € {1,2,3} with edges of E;, coloured in red.

The simple random walk on H,, is the process {X;;t > 0} described as follows: an
exponential clock with rate one is attached to each edge of E,,,. Whenever a clock rings,
the edge associated with that clock is flipped, making the random walker jump if she was
at one of the incident vertices to that edge. Its infinitesimal generator is the discrete Lapla-
cian operator A, given by

y~x

which says that if the random walker stands at a vertex x then it can jump to any of its
adjacent vertices with rate 1. In the above formula, x ~ y denotes that + and y share a
common edge.

An interesting question to make Is to ask how long the random walker takes to get
completely lost. In order to answer this question, let y; (x) denote the probability that
X+ = x given that X, = z¢, and let U,,, denote the uniform measure on V;,,. The distance
to equilibrium of the simple random walk on H,,, is defined as

o€V, o€V, 2

(
1 1
dn (1) = ma 1 = Unllpy = max {5 3 |uf(@) - o } |

Not only the above function is decreasing, but it also takes values in the interval |0, 1].
Thus, given a threshold ¢ € (0, 1), it makes sense to define the -mixing time of the simple

9th LAWCG and MDA, November 25th, 2020.

the Hanol graph

Rodrigo Marinho

CENTRO DE ANALISE MATEMATICA, GEOMETRIA E SISTEMAS DINAMICOS

Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

rodrigo.marinho@tecnico.ulisboa.pt

random walk as

(&) = inf {t > 0: dp (£) < &),

mix

formalizing the answer to the aforementioned question.

Algebraic connectivity and Poincare inequalities

The spectral gap ~,, of the simple random walk on #,,, (also known as the algebraic
connectivity of the graph H,,) is defined as the symmetric of the second largest eigen-
value v, of the operator A,,. It also presents a variational formula [2]. Indeed, let &, be
the Dirichlet form of the simple random walk on #,,, which is given by

YY\f

mEV Yy~x

()] Un(@).

Let Var(f; U,,) be the variance of a function f : V,;, — R for the simple random walk on
Hrm, Which is given by

Var(f: Up) = ny (V)2 U () U ().

The spectral gap ~,, of the simple random walk on H,,, can be defined as

Y = l?f{Var(f; U] Var(f; Up,) # O}.

Namely, the relaxation time ¢, := 1 /vy, of the simple random walk on Hy, is the smallest
constant that satisfies the Poincaré inequality

Var(f; Up) < C &S, f) for every function f.
The spectral gap is strongly related to mixing because
dm (t) < 3M/2 o=t (see [5], for instance).
Our result in this direction is the following:

Theorem 1: For every m > 2 we have

n—1

Lrei < 3 (1/3: 11/3) , where (a; q),, = kl_[O (1—agh)

Is the g-Pochhammer symbol, also known as ¢-shifted factorial. Consequently,

0252 () o))

Logarithmic-Sobolev inequalities

The log-Sobolev constant «,,, of the simple random walk on H,,, presents a similar vari-
ational definition. Here the variance is replaced by the entropy-like quantity £,, given

by
_ 1216 f(@) N
- 2 W 1g(zZeHmue)szme)) Tl

rEH,,

Namely

Logarithmic-Sobolev and Poincare inequalities for the simple random walk on

that is, 1/, is the smallest constant that satisfies the logarithmic Sobolev inequality
Ln(f) < CEn(f, f) for every function f.
The log-Sobolev constant is stronger than the spectral gap in the sense that
dm (t) < v/me O‘mt/z (see [3], for instance).

We prove the following result:

Theorem 2: There exists a constant o € (0.856, 1.500| such that for every m > 1 we have

1 2 (3\"™ 2 (3\" 3\ "
- < o <§> . Consequently, ¢ (¢) < o <§> logm + O¢ ((§> )

Decomposing the graph

The main idea is to remove the edges of E}, and to decompose H,, into H! .,
i € {1,2,3}, and then to do some anaIyS|s leen a function f : V,;, - Rand i € {1, 2,3},
denote the restriction of f to the domain V' , by f\vz and define UZ = Um\vz

Firstly, we prove that

m—1) + Var(G; Up) <

Var(f; Up) = ZVarf\vz ; Em(f, [)+ Var(G; Uy).

Tm—1

where G(i) = ZZGHZ f(2) ,}n (2) is the expectation of the function f, restricted

to V! _,, with respect to the measure U’ ,. Secondly, we show that Var(G; U;) <
31— ””Var(f, Up). By the definition of ,,, we obtain
1 1

Ym  Ym—1 <1 - 31—m)’
which after an induction argument, implies Theorem 1. Similarly, we prove that

Lon(f) € —Emlf, ) + &(W F.VF),
Qm—1
where F (i) is the square of the ¢* (Uﬁn ;) norm of the function f restricted to VZ _4- Then,

we show that 0%51(\/?, V) < aﬁm Em(f, f). Theorem 2 follows from an |nduct|on argu-
ment.

Remark: Looking carefully at the lower bound on the log-Sobolev constant obtained in
Theorem 2 with the above method, one can see that it strongly depends on the upper
bound on the relaxation time. More precisely, if one can obtain a sharper exponential up-
per bound on ¢, then, using our method, they can obtain a lower bound on the second
parameter which has the same order.
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Introdution

A k-total coloring of a graph GG is an assignment of k£ colors to the elements of G such that adjacent elements have
different colors. The total chromatic number x"(G) is the smallest integer k for which G has a k-total coloring. Clearly,
X"(G) > A+1, and the Total Coloring Conjecture (TCC) states that for any simple graph G, x"(G) < A+2, where A is the
maximum degree of G' |2, 8. Graphs with x"(G) = A(G)+1 are called Type 1, and graphs with x"(G) = A(G)+2 are called
Type 2. A circulant graph Cy,(d, do, - - - ,dy) with 1 < dy < --- < d; < | 5] has vertex set V' = {vg, v1,- -+, v,—1} and edge
set B ='_, E; where E; = {e,el,--- el _,} and eé- = (v;,vj14,) where the indexes of the vertices are considered modulo
n. An edge of F; is called edge of length d;. In this work, we determine the Type of an infinite family of 4—regular circulant
graphs, that is, C,(a,b). When a divide n (or b divide n), we will have a Prism graph G(%, 1) as subgraph of Cy(a, b). A
Prism graph G(n, 1) is defined by V(G(n, 1) = {u;,v; | 0 <i < n} and E(G(n,1)) = {wu1, vva1, uv; | 0 <@ < n}.
See some examples of C,(a, b) with G(%, 1) as a subgraph in Figure 1.

(b) X"(C10(2,3)) =5
Figura 1:Examples of Cy(a, b) with G(7,1) as a subgraph.

(c) X"(Cr2(3,4)) =5

General results

In the table below, we present some results already known about the total coloring of circulant graphs.

Circulant graph Type 1 Type 2
C,(1) |9] n=0 mod 3 otherwise
Cn(1,2,..,15]) 19] n is odd otherwise

| = gde(d, n) with d = Im, m is even and Cy,(d, n) % [ copies of Ciy(2,5) otherwise

C,(1,2) [3] n #7 otherwise
Csp(1, k) (6] k=2 mod5ork=3 mod?H

Cep(1, k) (6] k=1 mod3or k=2 mod 3

C,(1,3) 9] tn = 8

Tabela 1:State of the art

Our results

[t is known that the Prism graphs G(n, 1) are Type 1, except G(5,1) |7, 4]. The 4—total coloring for this family will be
useful in the proof of the following theorem about 4—regular circulant graphs in which G(n, 1) is a subgraph.

Theorem 1. Let C),(2k,3) be a 4—reqular circulant graph. The graph C,(2k,3) is Type 1 for n = (8u + 6k, with
k > 1 and non-negative integers ( and A.

14 4 4 4 4 4 4
4 4 4
0 3 2 11 3 W0 1 12 0 0 .1 2 .0 1 |2 0 0 12 01 2 0
1 0 2 3 3 3 3 3 3 3
2 0 3 .2 1 .3 0 .1 2 2 0 1 .2 0 .1 2 1 20 I 2 Jo 1
L 4 4 4 4 4 4 4 4 4

(a) B(8,2) colored (b) B(6,2) colored (c) B(6,2) with other coloring

Figura 2:Semigraph B(n, a)
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A semigraph is a triple B = (V, E, S), where V is the set of vertices of B,F is a set of edges having two distinct endpoints
in V. and S is a set of semiedges having one endpoint in V. In this work we consider 4—regular semigraphs. Notice that a
k—total coloring of a semigraph B is an assignment of k colors to the edges, semiedges and vertices of B such that adjacent
elements have different colors.

Sketch of the proof. The result was proved in |1| when C,,(2k, 3) is connected, using the Figure 2(a) . Hence, suppose
that Cig,r61k(2k, 3) is disconnected, that is k = 3a. In this case, note that Cig, 61)3q(3, 6c¢) is isomorphic to three copies
of Cigu+6)all, 2ar). To construct the colorings of these graphs, we consider two cases: p = 0 and p # 0. When p = 0,
we construct the desired coloring by making the junction of A copies of the semigraph B(6,2) (Figure 2(c)) vertically and
horizontally, recursively. When p # 0, we make the junction of p copies of the semigraph B(8,2) with A copies of B(6,2)
(Figure 2 (b)) vertically and horizontally, recursively (the same for the case when C,(2k, 3) is connected). However the
process of joining its semiedges to construct the desired graph is different. See an example in Figure 3.

(b) B(12,4)
Figura 3:The graph C6(3, 12) with a total coloring with 5 colors.

(c) X"(Cia(1,4)) =5

Conclusion

The total chromatic number of several circulant graphs has been determined, including the total chromatic number of the
cubic circulant graphs Cs,(d, n). As a future work, we would like to determine the total chromatic number of all 4—regular
circulant graphs C),(a, b).
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Let GG be a simple graph. A k-total-coloring of G is an assignment of £ ®

colors to the edges and vertices of G, so that adjacent or incident Let B be the cubic semigraph with ‘

elements have different colors. The total chromatic number of G, 6 semi-edges, illustrated in Figure o o

denoted by x"(G) is is the least & for which G has a k-total-coloring.
Evidently, x"(G) > A(G) +1 , where A(G) is the maximum degree of
(G. The Total Coloring Conjecture [1] afirms that x"(G) <A(G) +2.
This conjecture has been proved for cubic graphs [2], so the total
chromatic number of a cubic graph is 4 or 5. Graphs with X" (G) > A(G)
+1 are said to be Type 1 and graphs with x”’(G) < A(G) +2 are said to be
Type 2 . Deciding whether a graph is Type1 has been shown NP-
complete [3].

A k-total-coloring is equitable if the cardinalities of any two color

2. Blowup graphs are constructed
by connecting copies of B as in the ® ®
examples of Figures 3.

An n-Blowup is a graph build with ®
n copies of B. Tv.

Figure 2: cubic semigraph B

Theorem: All n-Blowups with n>5 have equitable total chromatic
number equals 4.

classes differ by at most one. The least £ for which G has an equitable (a) Two copys of B colored L€ sketch of the proof is by construction and two ditferent
k-total-coloring is the equitable total chromatic number of G and its with 4 colors equitable 4-total-colorings were necessary to obtain the resullt.
enoted by Xe (G | | $ (b) 6-Blowup B with " B;/ '_I We represe.nt 1 .for blue, ff)r green, 3for red and ~ for yellow.
a2yl The search for connected, bridgeless, 3-regular L First coloring is showed in Figure 3(a). It's composed by two
R T graphs with chromatic index equals 4, was | T / \ ) o copies of B colored with 4 colors. More specifically, in this figure,
motivated by the Four Color Problem. Due the ; \r— d(1) = d(2) = d(3) = d(1) =15 (semiedges counts 0.5).
difficult to find them, they were named Snarks — ¢ \a ! When =0 (mod 2) we repeat this coloring % times. Evidently,
after Lewis Carrol poem "The hunting of the Y ' ’f d(1) = d(2) = d(3) = d(1) = - 15. Figure 3(b) shows 6-Blowup
‘‘‘‘ Snark", by M. Gardner [4]. Snarks were fictional — o \o colored following this rule.
...... animal  species described by Carrol as L o oo Thesecond coloring is showed in Figure 3(c) and its composed by
vy, unimaginable creatures. 3 copies of B colored with 4 colors.
© See=——=—=0) Figure 1: Lewis Carrol book cover ? In this coloring, (I)(l) = CI)( ) =22 and (I)( ) = (I)(3) = 23.
The girth of G is the length of the shortest cycle contained in G. One ! T When n= 1 (mod 2) we use this coloring once and for the
condition often imposed on snarks is that they must have girth at least - remaining n- 3 copies of B we repeat % times the coloring
5, to avoid graphs that can be reduced to a smaller graph by replacing - showed in 3(a).
a subgraph for strl}cture.s that do not atfect the fedge C()l()l”'ablht}.k N o Thus, &(1) = &) = 22 + % 15 and () = b(3) = 23 + % 15,
n t.hls study we mvestlgate. the k—to.t.al—col()rmg O.f Bl(.)qu nfinite ) mrec copys of B colored (0 -plowup Bt Evidently, ¢(1), ¢(2), $(3) and ¢() ditfer at most one. Figure 3(d)
family of snarks, recently defined by Hagglund |5], with girth at leasts. with 4 colors , | o, | . .
Figure3: Construction of 5-Blowup and 6-Blowup with X (B) = 4 shows 5-Blowup colored following this rule.
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Introduction

Let G be a graph and W C V(&) be a non-empty set, called terminal
set. A strict connection tree of G for W is a tree subgraph of G whose
leal set is equal to W. A non-terminal vertex of a strict connection
tree T' is called linker if its degree in T' is exactly 2, and it is called
router it its degree in 1" is at least 3. We remark that the vertex set of
every connection tree can be partitioned into terminal vertices, linkers
and routers. For each connection tree T', we let L(7T") denote the linker
set of T"and R(T") denote the router set of T'. Figure 1 illustrates a graph
(+, a terminal set W and a strict connection tree of G for W

0L D:;@s

Figure 1: (a) Graph G and terminal set W (blue squared vertlces).
connection tree T of G for W, such that |L(T)| = 3 and |R(T')| =

(b) Strict terminal
3.
Motivated by applications in information security, network routing and

telecommunication, Dourado et al. [1] introduced the STRICT TERMI-
NAL CONNECTION problem, which is formally defined below.

STRICT TERMINAL CONNECTION (S-TCP)

A graph G, a non-empty terminal set W C V(@) and
two non-negative integers £ and 7.
QQuestion: Does there exist a strict connection tree 1" of G for W,

such that |L(T)| < £ and |[R(T)| < r7

Input:

Table 1 summarises the complexity of S-T'CP with respect to the param-
eters £, r, A(G), and the classes of split graphs and cographs. In addition
to these results, it is known that S-TCP is NP-complete even it A(G) = 4
and ¢ > 0 is fixed, or A(G) = 3 and £ is arbitrarily large [3|; on the other
hand, if A(G) = 3, the problem can be solved in time n® [3],

Parameters
Graph class — 4 r 0, r l,r, A(G)
Ceneral NPC 1] NPC [1] P for r € {0,1} [2] XP [1] FPT [1, 3] but
but W|2|h [3] but W|2]h [3]  No-poly kernel |3]
Split NPC 3] NPC [3 P XP L 3 FPT (1, 3}
but W[2]h |3] but W[2]h [3]
Cographs P [3] P [3] P [3] P [3] P [3]

Table 1: Computational complexity of S-TCP. (Adapted from [3].)

{aamelo,celina}@cos.ufrj.br
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Contribution

In this work, we prove that S-TCP remains NP-complete when re-
stricted to chordal bipartite graphs, even if £ > 0 is fixed.

S-TCP on Chordal Bipartite Graphs

A graph G is called chordal bipartite it every induced cycle of GG has
length 4. Equivalently, a graph G is chordal bipartite it G is bipartite
and every cycle of GG of length at least 6 has a chord, i.e. an edge between

Uéverton dos Santos Souza

twoO non-consecutive vertices

To prove that S-TCP is NP-

present a polynomial-time red

of the cycle.
complete on chordal bipartite graphs, we
uction from VERTEX-COVER, which is for-

mally defined below. The pro

bosed reduction is based on the polynomial-

time reduction given by Miiller and Brandstadt |4
STEINER TREE is also NP-complete on chordal bi

VERTEX COVER

Input: A graph G and a positive integer k.

| so as to prove that

partite graphs.

The Strict Terminal Connection Problem on Chordal Bipartite Graphs
Alexsander Andrade de Melo *

IFederal University of Rio de Janeiro, Rio de Janeiro, Brazil

2

’Federal Fluminense University, Niteroi, Brazil

o For each vjv; € E(G), create the gadgets H;; and Hj; as illustrated in
Figure 3.

Lj Pij wl
Pij
w2297:j
w;ij
Y; qi wgij

Figure 3: Gadgets H;; and H;, respectively.

o Finally, define W = Wy U W5 U W5 and r = k + 4n + 4m, where
= {w;,w; |v; € V(G)},
WQ {waz w2 w%,w%,wé,wq e V(G)}, and

{wpw wpw w% wgw viv; € E(G)}-.

Theorem. Let I = (G, k) be an instance of VERTEX-COVER, such
that G has at least one edge, and let ¢ > 0 be a constant. The graph H

of f(I,c) is chordal bipartite. Moreover, I is a yes-instance of
VERTEX-COVER if and only if f(I, c) is a yes-instance of S-TCP.

Concluding remarks

Question: Does there exist a subset S C V(G) such that |S| < k
and every edge of G has an endpoint in S

Construction. Let I = (G, k) be an instance of VERTEX COVER
and ¢ > 0 be a constant. Assume that V(G) = {vy,...,v,} for some
positive integer n > 2. Moreover, assume that G has at least one edge,
ie. m=|E(G) >1. Welet f(I,c)=(H,W,{ = c,r) be the instance
of 5-TCP defined as follows.
o For each v; € V(G), create the gadget H; as illustrated in Figure 2.
X Y; C; 1
O Q 0<g“’2
Y
wCZLz' a;

ngg |
\) 2z
2 b b,

Figure 2: Gadget H;.

e Subdivide the edge w! ‘ay of Hy into £ new vertices uy, ua, . . ., Uy,

creating the induced path (W uy, ... upar).

o For each pair v;, v; € V(G), with ¢ # j, add the edges z;y; and z;y;,
making the subgraph of A induced by X UY U Z a complete bipartite
oraph with bipartition (X U Z,Y"), where X ={x; | v; € V(G)},

Y =Ay; |vieV(G)}and Z ={z | v; € V(G)}.

We conclude this work by

e s S-TCP parameterized

o [s 5-TCP parameterized

posINg some open questions.

by r > 2 in XP?

by r > 2 in FPT when restricted to chordal

bipartite graphs? If not, is it in XP”

o [s S-TCP parameterized by ¢ in FPT when restricted to graphs of
maximum degree 37

e In addition to cographs, on which graph classes is S-TCP in P?
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BOUNDS FOR RANGE-RELAXED GRACEFUL GAME

iy and Deise L. de Oliveira’, Simone Dantas’, Atilio G. Luiz?
' MDA 1 IME, Fluminense Federal University, Niteroi, Rio de Janeiro, deiseoliveira@id.uff.br ; sdantas@id.uff.br
T T 2 Campus Quixada, Federal University of Ceara, Quixada, Ceara, gomes.atilio@ufc.br

INTRODUCTION

Tuza [1] contributed to the area of graph labeling presenting many results in his seminal paper
and proposing new labeling games. We investigate the Range-Relaxed Graceful game (RRG
game) and present a lower bound for the number of available labels for which Alice has a
winning strategy in the RRG game on a simple graph G, on a cycle and on a path graph.

RANGE RELAXED GRACEFUL LABELING

Given a graph G and the set of consecutive integer labels L =1{0,..,k}, k = |E(G)|, a
labeling f: V(G) — L Is said to be a Range-Relaxed Graceful Labeling if: (i) f Is injective; (ii)
each edge uv € E(G) is assigned the (induced) label g(uv) = |f(uw) — f(v)|, then all induced
edge labels are distinct.

RRG Labeling of K-

RRG GAME

Two players, called Alice and Bob, alternately assign a previously unused label f(v)e L = {0,
..., K}, kK = |E(G)| to an unlabeled vertex v of a given graph G. If both ends of uv € E(G) are
already labeled, then the label of the edge is defined as |f(u) — f(v)]|. A move is said legal
If, after it, all edge labels are distinct. Alice’s goal Is to end up with a vertex labeling of the
whole G where all of its edges have distinct labels and Bob's goal is to prevent it from
happening.

OBJECTIVE

To Investigate the Range-Relaxed Graceful game, present a lower bound on the number of
consecutive nonnegative integer labels necessary for Alice to win the RRG game on a simple
graph G and contribute to the study of the question posed by Tuza [1]:

TUZA'S QUESTION
Given a simple graph G and a set of consecutive nonnegative Iinteger labels f(v)
e L=1{0,...,k}, for which values of k can Alice win the range-relaxed graceful game?
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RESULTS

Let G be a simple graph on n vertices and maximum degree A. Alice wins the RRG
game on G for any set of integer labels L = {0, ..., k}, with

K> (202 4+ 1)(n—1) + (24 + 1) (”;1).

For each vertex v € V(G), we define a set of avallable labels L, . When the game
starts, L,= L, for every v € V(G). At each iteration, a player assigns a label to an
unlabeled vertex u from its set L, and, then, the set of available labels of each
remaining vertex Is updated. Only vertex labels that can not generate repeated edge
labels In future iterations can last at each set. We consider four cases that can give
rise to repeated edge labels and, for each one, we count how many labels are deleted,
throughout the game, from each set of available labels. From our analysis, we

conclude that at most (2A%+1)(n—1) + (2A+ 1) (n ; 1

each set of avallable labels. Since |L| Is greater than this value, there iIs always an
avallable label at each set that can be assigned to a vertex.

) labels are deleted from

Consider C: andtheset L= {0, 1, 2, 3, ..., 66}. Suppose that Alice starts the game
by assigning label 7 to a vertex v;. Below, we present the first three iterations, where
the players play at v, v,, v3 consecutively, and we show the last iteration.

L, =[0,66]\ {7} Ly, = [0,66] \

L,, =[0, 66]\{3, 5,7} {5,7,13,15,17,25} 17,19,21,23,27,31}

A similar proof Is obtained for the following result.

Given any integer n = 4, Alice wins the RRG game on the path P, and on the cycle
C, for any set of integer labels L = {0, ..., k},with k =>9n —17.
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Introduction Smith normal form and graphs

We compute the sandpile groups of outerplanar planar graphs. The method can
be used to determine the algebraic structure of the sandpile groups of other planar
graph families.

Sandpile groups

The sandpile group was originated in statistical physics. It was the first model
of a dynamical system exhibiting self-organized criticality.
The dynamics of the sandpiles are developed over a graph G 1n the following way.
Consider a graph G with a special vertex q, called sink. A configuration c 1s a
vector whose entries are associated with the number of grains of sand at each vertex
of G. The sink vertex collects the sand quitting the system. A vertex 1s stable 1f the
number of sand grains on it 1s lower than 1ts degree, that 1s, the number of edges
incident to the vertex. Otherwise, the vertex 1s unstable. A configuration 1s stable 1t
all the non-sink vertices of G are stable. A toppling of an unstable configuration
consists of selecting an unstable vertex v and moving deg(v) grains from v to its
neighbors, such that each neighbor u receives m(u,v) grains, where m(u, v)
denotes the number of edges between u and v. In Figure 1, we show a sequence of
topplings.

2 0
e @2o a0 @le ae
\(_J/ /\Qz) \_,./ 2/ '\,_,/ /\QZD
C)HCD '@'—‘\2) 0 ‘O ﬁ) (@ '\lj (ij

(a) (b) (c) (d) (e)

Figure 1: The sequence of topplings starts in (a) with the configuration (1,2,1,0,q) over the
cycle with 5 vertices. At each step, the toppled vertex is highlighted in red.

Over connected graphs with a sink, we will always obtain a stable and unique

configuration after a finite sequence of topplings. The stable configuration obtained
from the configuration ¢ will be denoted by s(c¢). The sum of two configurations ¢
and d 1s performed entry-by-entry. Let c®d: = s(c + d). A configuration ¢ 1s
recurrent 1f there exists a non-zero configuration d such that ¢ = c@d. Recurrent
configurations play a central role in the dynamics of the Abelian sandpile model
since recurrent configurations together with the @ operation form an Abelian group
known as sandpile group and denoted K(G). An introduction to the topic can be
found mn [1].
For example, the recurrent configurations for the cycle with 5 vertices and sink
vertex g are (0,1,1,1,¢9), (1,0,1,1,9), (1,1,0,1,9), (1,1,1,0,9) and (1,1,1,1,q).
Could the reader verify that these configurations form an Abelian group with the @
operation? Which configuration 1s the 1dentity?

Let GL,,(Z) denote the group of nXn invertible matrices with entries in the
integers whose inverses also have entries 1n the integers. Two matrices M and N are
equivalent 1f there exist two matrices P, Q € GL,,(Z) such that M = QNP. The Smith
normal form of the matrix M 1s the unique diagonal matrix diag(dy, ..., d,, 0, ...,0)
equivalent to M such that r 1s the rank of M and d;|d; for i <j. The integers

d4, ..., d, are called invariant factors.

Let G be a planar graph with s interior faces F, ..., E, let ¢(F;) denote the number of
edges in the cycle bounding F;. We define the cycle-intersection matrix, C(G) =
(ci;) to be a symmetric sXs matrix, where ¢;; = ¢(F;), and ¢;; 1s the negative of the

number of common edges in the cycles bounding F; and F;, when i # j.

Lemma [2]. Let d4,...,d, be the invariant factors of C(G), where G is a planar
graph. Then K(G) = Zy, @D - @Zgy_.

Sandpile groups of outerplanar graphs

We call a graph outerplanar 1f 1t has a planar embedding with the outer face

containing all the vertices. The weak dual graph G, 1s constructed the same way as
the dual graph but without placing the vertex associated with the outer face. A graph
G is biconnected outerplanar if and only if its weak dual is a tree. Note that C(G) +
A(G,) = diag(c(F;),...,c(F;)), where A(G) 1s the adjacency matrix of G.

A 2-matching M 1s a set of edges of a graph G such that each vertex of G 1s incident
with at most 2 edges of M. Let denote by G°, the graph G where each vertex has a
loop added. Given a 2-matching M of G°, let L(M) denote the set of loops in M. A 2-
matching M of G° is minimal if there is no 2-matching M’ of G° such that Q(M") is
not contained in (M) and |M'| = |M|. The set of minimal 2-matchings of a tree
with loops T° with k edges will be denoted by 2M,(T°). Let d(M) denote the

determinant of the submatrix of C(G) = diag(c(Fy), ..., c(F;)) — A(T) created by
taking the rows and columns associated with the loops of M of T°.

Theorem [2]. Let G be a planar biconnected graph whose weak dual 1s the tree T
with n vertices. Let A= gcd({d(M): M € 2M;(T°)}). Then the spanning-tree
number 7(G) coincides with A, and K(G) = Zp, D Za, @D Z 1y .

Aq An—1
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Abstract

Fullerene graphs are based on a famous carbon
allotrope and have become a popular class of
graphs (see references in [2|). They are char-
acterized as 3-regular and 3-connected planar

oraphs, with only pentagonal or hexagonal tfaces.
The fullerene graph with icosahedral symmetry
is a particular class of fullerene graphs with pre-
cisely 12 pentagonal faces. Moreover, the mid-
points of its pentagonal faces form the planning
of an icosahedron. They can be described by

a vector (4,7), where j > 4 > 0 and j > 0,

determining the graph Gj; ;. In 2013, Andova
and Skrekovski presented and proved formulas
to compute the diameter of the graphs G ; and
G ;. Moreover, they presented a conjecture
stating a lower bound for the diameter of all

fullerene graphs. Therefore, in this study, we
investigate properties of fullerene graphs with
icosahedral symmetry. We show that, for ¢, 7 &
N* 7 > 1, every graph G; ; contains a reduced
G j—i and that every graph G ; is contained in
an augmented G ;.

Introduction

An (undirected) graph G is a geometric object com-
posed of a set of vertices and edges. Figure 1 shows
a simple graph, i.e., a graph that does not have
more than one edge between the same pair of ver-
tices, and has no edges intersecting a vertex to it-
self. Before investigating the fullerene graphs, we
require some graph theory definitions and concepts.
A graph G is k-regular if all of its vertices have de-
oree k. A graph G is k-connected if it remains con-
nected whenever fewer than k£ edges are removed.

“ thiagoomenez@aluno.puc-rio.br, *diegonicodemos@cp2.g12.br, ¢ sdantas@id.uff.br
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Figure 1: A simple Graph G.

A graph G is planar if it has an immersion in the
plane so that its edges intersect only at their end-
points. The diameter of a graph is the maximum
distance between any pair of vertices of G.

As an example, Figure 2 displays the Fullerene
araph Cy: it is planar (no two edges intersect each
other); it is 3-regular (all vertices have degree 3);
and it is 3-connected (it remains connected if we
remove one or two edges). Fullerene graphs are 3-
regular and 3-connected planar graphs with only
pentagonal and hexagonal faces. Figure 2 shows
the Fullerene graph Cy.

Figure 2: Fullerene graph Cy.

Icosahedral Symmetry

Fullerene graphs with icosahedral symmetry have
exactly 12 pentagonal faces. All other faces are
hexagons. Moreover, their pentagonal faces shape
the planning of an icosahedron. They are described
by G;j, 1,5 € N* 7 > 1, where 72 and 7 deter-
mine the distance between the vertices, with ¢ as
the number of hexagons in direction 7 and 7 as
the number of hexagons in direction 7 (see Fig-
ure 3). Figure 3 displays the planning of the graph
Fullerene graph with icosahedral symmetry G 4.

OO O
22020 % %%
220202 %%
22020 % %%
2 2e e et

A

A

Figure 3: Planning of the graph G 4.

Results

Theorem 1

Every tullerene graph with icosahedral symme-
try G;;, 1,5 € N*, 7 > 4, contains a reduced
graph Go ;.

Theorem 2

Every fullerene graph with icosahedral symme-

try Gij, 1,7 € N*, 7 > 4, Is contained in an
augmented graph G ;.

The proofs of both theorems are based on vecto-
rial operations of the vector 7 and ? and the
hexagonal lattice’s symmetry characteristics. Fig-
ure 4 displays the results of Theorems 1 and 2 for
the graph G 4. The black triangle corresponds to
a section of G1 4. As a visual proof of Theorem 1,
note that the blue triangle corresponds to the graph
(o3, entirely included in Gy 4. Similarly for The-
orem 2, the red triangle corresponds to the Gy,
which wholly contains the graph G 4.

Figure 4: Example of Theorems 1 and 2 for G 4.

1] Andova, V; Skrekovski, R. Diameter of Fullerenes

Graphs with Full Icosahedral Symmetry. MATCH,
2013.

2| Nicodemos, D; Stehlik, M. Fullerene graphs of small
diameters. MATCH, 2017.
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A relationship between D-eigenvalues and diameter.

Del-Vecchio, Renata R. - IME/UFF - rrdelvecchio@id.uff.br, Abdén, Miriam - IME/UFF -
miriam.abdon@gmail.com, Lobo, Tayna - IME/UFF - taynalobo@id.uff.br

Objective

Our goal Is to provide examples of connected graphs having diameter d and
less than d + 1 D-eigenvalues. This answers a question stated by Atik and Panigrahi

In [4, Problem 4.3].

Introduction

It Is known, by [1], that If G Is a graph of diameter d then the adjacency matrix
of G has at least d + 1 distinct eigenvalues. We can see in [2] that distance-regular
graphs actually attains this minimum, that Is, they have exactly d + 1 distinct

adjacency eigenvalues.

A simple connected graph G Is called distance-regular if it is regular, and if for
any two vertices x,y € V(G) at distance i, there are constant number of neighbors
c; and b; of y at distancei — 1 and i + 1 from x, respectively.

o e
S

Figure 1. C, and Petersen graph are examples of distance regular graphs. More generally, C,, Is a

distance regular graph.

It seems reasonable to ask whether these results can be extended to the
eigenvalues associated with the distance matrix (D -eigenvalues) of a simple
connected graph G. Indeed, Lin et al. [5] ask if, for a graph G with diameter d, Its

distance matrix has at least d

1 distinct eigenvalues. Atik and Panigrahi give a

negative answer to this problem in [4]. Moreover, they prove that a distance-regular
graph with diameter d has at most d + 1 distinct D-eigenvalues and leave the
following question: “Are there connected graphs other than distance regular graphs
with diameter d and having less than d + 1 distinct D-eigenvalues?”.

In what follows, we answer this question positively by given two examples of
connected graphs with diameter d having less than d + 1 distinct D-eigenvalues.

Examples

In our example we consider two bipartite graphs G, and G, described in figures
2 and 3. We have that |V(G,)| = 20 and |V (G,)| = 70, and that diam(G,) = 5 and
diam(G,) = 7. However, both graphs have exactly four distinct D-eigenvalues.
These graphs and their respectively D-spectrum are shown as follows.

In particular, our examples are both distance-biregular graphs, for a precise

definition see [3].
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Figure 2: The graph G;.
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Conclusions

About the problem proposed by Atik and Panigrahi in [4], 1t can be said that
there are other connected graphs with diameter d, In addition to distance regular
graphs, having less than d + 1 distinct D-eigenvalues. More specifically, the
graphs presented in this work have exactly 4 distinct D-eigenvalues. For future
works, we are Interested in characterize a class of distance-biregular graphs with
this property.
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Introduction

In Cellular Networks, communication between bases and mobile
devices 1s established via radio frequencies. Interference occurs if one
particular device communicates with two different bases that have the
same frequency. So, every device must contact a base with an unique
frequency and, since having a lot of different frequencies 1s expensive,
it’s important trying to minimize their quantity, in a way that there
ex1sts no interference.

With that motivation, in 2002, Even, Lotker, Ron and Smorodinsky [1]
introduced the concept of Conflict Free coloring 1n a geometric
scenar1o, which 1itself led to the study of CFCN coloring 1n graphs, and,
in 2015, Gardano and Rescigno [2] proved that CFCN coloring 1s NP-
complete.

Inspired by this problem, and by the well known coloring game, we
introduce a game theoretical approach to CFCN coloring, and
determine the minimum number of colors necessary for Alice to have a
winning strategy in the case of Complete Graphs.

CFCN Coloring

A CFCN coloring of a graph G 1s an assignment of colors to the
vertices of G such that each vertex v in G has an uniquely colored
vertex 1n 1ts closed neighborhood N|v/] (the set of all vertices adjacent
to v including 1itself). A CFCN k-coloring of a graph G 1s a CFCN
coloring with at most k£ colors. We say that N/v/ 1s fully colored if each
vertex of N/v/ has a color assigned to 1t. A graph together with a CFCN
k-coloring 1s said to be CFCN k-colored.

CFCN Coloring of Complete Graphs

Complete graphs have a CFCN 2-coloring, by coloring one vertex
with the first color and the others with the second.

CFCN Coloring Game

Given a graph G and k£ >/ colors, two players, Alice and Bob,
take turns coloring vertices of G such that at each turn for every v
with a fully colored N/v/, the induced subgraph G/N/v/] 1s CNCF
k-colored. The goal of Alice is to obtain a CFCN k-coloring of G
while Bob does his best to prevent it. Alice wins 1f at the end G
has a CFCN k-coloring; otherwise Bob wins.

We refer to the next figure for a CFCN 2-coloring game on Kj,
where white vertices are uncolored ones. The game ends on the 4
turn because, no matter which color Alice chooses for the 5% turn ,
it creates a fully colored neighborhood that is not CFCN 2-colored.

Alice

AN

The figure below shows a CFCN 3-coloring game on K., where
white vertices are uncolored ones. The game ends on the 6™ turn

because the Graph 1s CFCN 3-colored.

Alice Bob

LN, AN
A2V,

Bob
O

/RN

/

\

Conflict Free Closed Neighborhood Coloring Game

Results

Theorem: Alice wins CFCN k-coloring game on a complete graph G
on n vertices if and only if k > [ﬂ

Sketch of the proof: Let k> 1 be the number of available colors. Without
loss of generality, Alice starts playing in any vertex with color /.

We claim that Alice always wins 1f n < 4 and k=2 (winning for any k).
Indeed if n=1, Alice colors the vertex with /. If n=2, Alice colors a
vertex with 1 and then Bob is forced to color the other vertex with 2. If
n=3, on the 15 turn she colors a vertex with / and on the 3™ with 2. If
n=4, Alice guarantees that by the 3 turn, without loss of generality,
there are two vertices colored with / and one vertex colored with 2,
thus Bob has to finish the coloring with / or another color different
from 2.

If n>4, the proof 1s based on the following strategy.

Assume that k < EL Bob colors a vertex with 2. If Alice colors the

next vertex with / (resp. 2), Bob colors a vertex with 2 (resp. 7). On the
following turns, independently of the colors chosen by Alice, Bob
chooses the other colors twice and the game ends. If Alice colors the
next vertex with a color ¢ not 1n {/,2}, then Bob colors the next ones
with [, 2, ¢, and then chooses the remaining colors twice. In any case
Bob wins the game.

Now assume k > [ﬂ If the number of vertices 1s even then Alice

always plays I. If the number of vertices 1s odd then Alice does the
same strategy until her last turn, 1n which she chooses I or one of the
remaining colors. In both cases, Alice wins because the graph doesn’t
have enough vertices for Bob to guarantee that each colors 1s used

twice.
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Introduction

The teaching of Combinatorial Analysis is still done in a very
mechanical way by some teachers who, for the most part,
memorize formulas without real content domain. This practice
iIs repeated superficially, thus not stimulating combinatorial
reasoning [1]. The vast majority of books and websites present
this content only through formulas, without showing their
relationship to applicability, making it difficult for students to
learn. Thus, we present an application of Newton's Binomial, as
a way of intuitively teaching such content. Since the binomial is
used in many areas, we choose an interdisciplinary study with
Biology, more specifically, in Genetics. In this work, we show
how the binomial is presented in Genetics and why it is so
important to understand certain characteristics inherited from
our ancestors, such as the color of the eyes. We use concepts
of Polygenic (or Quantitative) Inheritance [2].

o Objective

The aim of this work is to present a new way of teaching
Newton's Binomial through an interesting application related to
Genetics, without the early use of formulas. In addition, we
show the relationship between the binomial and the
combinatorial analysis: how is the combination present in
terms of the binomial and what do they represent in its
expansion?

o Methodology

The methodology consisted of studying applications in
genetics that involve Newton's Binomial, choosing an
application and developing playful material for teaching the
content which included simulations and short films.

TEACHING

NEWTON's

BINOMIA‘L
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Application A

In genetics, phenotype refers to characteristics of the individual
that can be visible or detectable, and polygenes are groups of
genes that produce repeated variations. Polygenic inheritance
refers to a single inherited phenotypic trait that is controlled by
two or more different genes. The interaction that occurs between
genes (polygenes) that convey the inherited characteristics
happens in such a way that each one of them is responsible for a
portion of the resulting phenotype. The pattern of inheritance
distribution, in this case, follows the pattern of Newton's
Binomial, (p + q) ", where n is the number of polygenes, p
represents the dominant genes (B and G) and q represents the
recessive (b). In our study, we develop Newton’s binomial for the
eye color problem [3].

The eye color results from at least two genes. The first, OCA2
(oculocutaneous albinism Il), comes in two forms: B (brown) and
b (blue). The second gene, called GEY (green eye color), comes
also in two forms: G (green) and b (blue). The first thing to notice
is that the gene B is dominant over both G and b. And, as well, G
is dominant over b (recessive). In other words, a person
heterozygote BbGb, despite having the gene G, she has brown
eyes. Thus, we could calculate the probability of their progenies
being born with brown, green or blue eyes shown in Table 1 [4].
Other genes produce spots, rays, rings and pigment diffusion
patterns.

Table 1: Cross between two heterozygotes

BB Bb o]} bb
c[c BBGG BbGG bBGG bbGG

¢l BBGb BbGb bBGb  bbGb
Jel BBbG BbbG  bBbG  bbbG
J8 BBbb  Bbbb bBbb  bbbb

“m»-
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Introduction

Given a graph G and a set of colors C, a vertex coloring
a : V(G) — C'is an assignment of colors from C to the
vertices of (G. If there are no adjacent vertices with the
same color, « Is proper. Let 5 be a not necessarily proper
vertex coloring of G such that for every two distinct col-
ors, there are adjacent vertices in G assigned these col-
ors. If 8 is proper, then it is an achromatic (or complete)
coloring of GG. If 5 is nonproper, then it is a pseudoachro-
matic (or nonproper complete) coloring of G. If 5 is a pseu-
doachromatic coloring of G and for every color i, there is
an edge of G whose both vertices are colored 7, then 3 is a
strong pseudoachromatic (or strong nonproper complete)
coloring of G. (See Figure 1.) The maximum number of
colors of a strong pseudoachromatic coloring is its strong
pseudoachromatic number (or strong achromatic number),

P (G)

1 2 3

Figure 1: A strong pseudoachromatic coloring for P, Ps, Cy
and Kg)g.

Historical context

Chartrand and Zhang [1, p. 329] presented the strong pseu-
doachromatic coloring (they use the term "nonproper com-
plete coloring") in the Study Project 6 [1, p. 442]. They ask
for bounds to the pseudoachromatic number in terms of
the number of edges and suggest investigating the strong
pseudoachromatic number of paths and graphs in general.

Previous results

Although there are many studies of the achromatic color-
ing (see Chartrand and Zhang [1, p. 329]), the only pub-
lished paper on strong pseudoachromatic coloring is by
Liu, Li, and Liu [2]. They present bounds for the strong
pseudoachromatic number in the general case and deter-
mine the strong pseudoachromatic number of complete
graphs, paths, cycles, complete multipartite graphs, com-
plete biequipartite graphs from which a perfect matching
Is deleted, wheels, fans, and some line graphs.

Motivation

Let G be agraphand 5 : V(G) — C' be a pseudoachromatic
coloring of (G. By the definition of pseudoachromatic col-
oring, for each color : € C, there must be an edge whose
both vertices are colored i. So, |C'| is at most the size of a
maximum matching of Gz, denoted by /(). Consequently,
V*(G) < d(G). By the previous results [2], this upper
bound is tight, since ¢¥*(G) = o/(G) when G is a complete
graph or a complete multipartite graph. (See Figure 2.)
2 3
1

2 2 1 2 3

Figure 2: A maximum strong pseudoachromatic coloring
and a maximum matching (in red) of K; and K>, .

A graph G is a split graph iff V(G) can be partitioned into
a maximum clique () and a stable set S. Figure 3 exhibits
a split graph. The size of () is denoted w(G). The bipartite
subgraph of G obtained by removing the edges between
vertices of () is denoted B.
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Our contribution

Theorem 2 If GG is a split graph, then

w(G) — o/(Ba)|

o' (G) = o' (Bg) 1 ;

Theorem 3 If GG is a split graph, then ¥*(G) = o/(G).

Sketch of proof. Since ¢*(G) < '(G) for any graph G, it
Is sufficient to exhibit a strong pseudoachromatic color-
ing with o/(G) colors. Let @ be a maximum clique in G.
Consider a maximum matching Mg Iin Bz and a maximum
matching Mg in G|Q \ V(Bg)|. For each edge in Mp U M),
assign a new color to its vertices (the same color for both
vertices). Assign a color previously used to the remaining
vertices. Since, for each color 7, there is a vertex in () col-
ored ¢ and an edge of Mp U Mg whose vertices are colored
7, we have a strong pseudoachromatic coloring.

Figure 3: A maximum strong pseudoachromatic coloring of
a split graph.
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Introduction

Starting from the eigenvalues of a matrix associated to a graph, spectral graph
theory seeks to deduce combinatorial properties of the graph. For this, we associate
a graph G to a matrix M and analyze the eigenvalues of M. Motivated by the graph
1Isomorphism problem, 1t 1s of interest to study, for a graph G, what fraction of all
graphs 1s uniquely determined by the M-spectrum of G. We propose representing a
graph using the Smith Normal Form (SNF) of certain distance matrices. We provide
numerical evidence that this algebraic representation may do a better job 1n
distinguishing graphs.

Spectrum and invariant factors

The eigenvalues of a matrix M(G) associated with a graph G are called the M-
spectrum of G, which 1s the multiset that allows multiple instances for each of its
eigenvalues. M-cospectral graphs are graphs that share the same M-spectrum.

The Smith Normal Form of an integer matrix M, denoted by SNF(M), 1s the
unique diagonal matrix such that SNF(M) = diag(d4, ...,d;0,...,0) = PMQ for
invertible matrices P, Q € GL(n, Z) such that r 1s the rank of M and d;|d; for i <.
The invariant factors of M are the integers in the diagonal of SNF(M). We say that
graphs G and H are M-coinvariant, if the SNFs of integer matrices M(G) and M (H)
are the same.

Enumeration

We focus on the following matrices for connected graphs: the adjacency matrix A,
the Laplacian matrix L, the distance matrix D, the signless Laplacian matrix Q, the
distance Laplacian matrix D* and the distance signless Laplacian matrix D¥.

Extensive research has been devoted to understand cospectral graphs, but much less
has been dedicated to understand coinvariant graphs and its potential to characterize
graphs. The reason for this could be that for matrices A, L, Q and D, there 1s a large
proportion of connected graphs having a coinvariant graph, as Figure 1.1 shows.

Figure 1.2 displays the number of cospectral and coinvariant graphs for matrices D*
and DY. We also include the spectral graphs for matrix Q, since according to Figure
1.1, this would be the best ivariant for distinguishing graphs using only the
spectrum. According to our results, the SNF of D9 performs better than the spectrum
for distinguishing graphs for the considered matrices. Details can be found 1n [1].
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Figure 1: The fraction of connected graphs on n vertices that have at least one cospectral
graph with respect to a certain associated matrix is denoted as sp,. The fraction of
connected graphs on n vertices with respect to a certain associated matrix that have at
least one coinvariant graph is denoted as in,,.

Coinvariant trees

Aouchiche and Hansen reported 1n [2] enumeration results on cospectral trees with at
most 20 vertices with respect to D, D* and DY matrices. For D, they found that
among the 123,867 trees on 18 vertices, there are two pairs of D-cospectral trees.
Among the 317,955 trees on 19 vertices, there are six pairs of D-cospectral trees.
There are 14 pairs of D-cospectral trees over all the 823,065 trees on 20 vertices.
Surprisingly, after the enumeration of all 1,346,023 trees on at most 20 vertices, they
found no D%-cospectral trees and no D9-cospectral trees. This fact led Aouchiche
and Hansen to conjecture that every tree is determined by its distance Laplacian
spectrum, and by 1ts distance signless Laplacian spectrum.

Analogously, for the SNF of D, DX and D¢ of trees, one can obtain some similar
insights. Hou and Woo obtained 1n [3] that the SNF of the distance matrix for any
tree with n + 1 vertices equals I,@DI,,_,@D(2n). From which follows that all trees
with n vertices are D-coinvariant graphs. On the other hand, after enumerating
coinvariant trees with at most 20 vertices with respect to DX and D¢, we found no
D% -coinvariant trees and no DY-coinvariant trees among all trees with up to 20
vertices. This fact led us to conjecture that all trees are determined by the SNF of D%,
and, analogously, by the SNF of D¢.

References

[1] A. Abiad and C.A. Alfaro. Enumeration of cospectral and coinvariant graphs. [arXiv:2008.057806]

[2] M. Aouchiche and P. Hansen. Cospectrality of graphs with respect to distance matrices. Appl. Math. Comput.
325 (2018) 309-321.
[3] Y. Hou and C. Woo. Distance unimodular equivalence of graphs. Linear Multilinear Algebra 56 (2008) 611-626.



7. 7,

Thinness and proper thinness

A graph G = (V, E) is k-thin if there exist an
ordering and a k-partition of V s.t., for
u<vs<w,ifu, v belongto the same class and
uw € E, then vw € E. The minimum such k is

called the thinness of G and denoted thin(G) [1].

Interval graphs are exactly the 1-thin graphs,
and 2-thin graphs include convex bipartite
graphs. Complements of induced matchings
have unbounded thinness.

Intersection models for 2-thin and proper 2-thin graphs

Flavia Bonomo-Braberman and Gaston Brito

2-diagonal box intersection models

A set of boxes drawn with sides parallel to the
Cartesian axes of the plane is 2-diagonal if their
upper-right corners are pairwise distinct and lie
In two diagonalsy = x + d4, y = x + d», either
in the 2nd or in the 4th quadrant, and weakly
2-diagonal if there is no quadrant restriction.
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2-thin graphs as VPG graphs

Blocking models

A model is blocking if for two non-intersecting

boxes b4, b, in the upper and lower diagonal,
resp., either the vertical prolongation of b;
Intersects b, or the horizontal prolongation of b,
intersects b;.

The main results of this work are the following characterizations of 2-thin and proper 2-thin graphs as
intersection graphs of boxes drawn with sides parallel to the Cartesian axes of the plane.

Theorem. A graph is 2-thin if and only if it has a blocking 2-diagonal model.

A graph is Bi-VPG if it is the vertex intersection
graph of paths with at most k bends in a grid.
An L-graph is a B1-VPG graph admitting a
representation with all the paths having the
same of the four possible shapesL, 1, T, 1.

= B5-VPG graphs have unbounded thinness.
m2-thin graphs are L-graphs (thus B-VPG).
s The wheel W, is 2-thin and not By-VPG.

= 3-thin graphs are B3-VPG.

Bonus track: new upperbound

The pathwidth (resp. bandwidth) of a graph G
can be defined as one less than the maximum
cligue size of an interval (resp. proper interval)
supergraph of G, chosen to minimize its
maximum clique size [3].

It was proved in [1] that
thin(G) < pw(G) + 1
We prove that, if |[E(G)| = 1, then

A graph G = (V, E) is proper k-thin if there exist
an ordering and a k-partition of V s.t., for

The blocking property is necessary since there are graphs with thinness 3 and a 2-diagonal model.

pthin(G) < bw(G)

A model is bi-semi-proper if for two boxes b, b” in the same diagonal, x, < x; implies x; < x1’ and y; < y1’.
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u<v<w,ifu,vbelong to the same class and

uw € E, then vw € E, and if v, w belong to the

same class and uw € E, then uv € E. The Theorem. The following statements are equivalent:

1. G is a proper 2-thin graph. -

minimum such k is called the proper thinness of
G and denoted pthin(G) [2].

2. G has a bi-semi-proper blocking 2-diagonal model.

3. G has a bi-semi-proper weakly 2-diagonal model.
Proper interval graphs are exactly the proper

1-thin graphs, and interval graphs have The bi-semi-proper property is necessary as interval graphs may have arbitrarily large proper thinness.

[3] H. Kaplan and R. Shamir.
unbounded proper thinness. These models are based on a model by Mannino, Oriolo and Chandran, defined to show that k-thin Pathwidth, bandwidth, and completion problems to
graphs can be represented as intersection graphs of boxes in the k-dimensional Euclidean space. proper interval graphs with small cliques.

SIAM J. Comput., 25(3):540-561, 1996.

Due to lack of space, some standard graph classes, graph parameters, and small graphs are not defined here. The definitions of those concepts can be found in http://graphclasses.org
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Introduction Result

The rainbow connection number of a connected graph G,
denoted rc((), is the least k for which GG admits a (not nec- Let G = 5(¢, k,n).
essarlly proper) lf;—edge—colonng such that between any pair /2], ifn —2and k — 1:
of vertices there 1s a path whose edge colors are all distinct. . . ,
. . o diam(G) = ¢ £ — 1, ifn=2and k > 1;
This parameter has important applications [3]. ,
210/2] +n — 3,ifn > 2.

Remark ([1]) If GG is a connected and not trivial graph with
n vertices, then diam(G) < rc(G) < |E(G)].

Let G =S, k,n).

We present a near-tight bound for the rainbow connection
number of snake graphs, a class commonly studied in label-

diam(G) + 1, if £ is even or n = 2;
ing problems [2, 3].

re(G) < {diam(G) + 2, if £ is odd.

Let { > 3,k > 1,n > 2. An fl-gon k-multiple snake
graph over n vertices, denoted S (¢, k,n), is obtained from
P, vyvy ... v,—1 by adding k multiple edges between v; and
vi+1 for 0 < ¢ < n — 2 and making £ — 2 successive subdi-

visions at each edge added. See Fig. 1.

R,
L

The rainbow connection number 1s already known [4] for

G = S5(3,k,n)with k € {1,2,3}. In this case,

This bound 1s near-tight, since we know snake graphs which
have r¢(G) = diam(G) + 1.

Proof (sketch). Fig. 2 shows a rainbow coloring of the block
Bi,i+1a for 0 S ? S n — 2.

- [diam(G) + 1,ifn =k = 3;
re(G) = {dmm(G), otherwise.

* Partially supported by CNPq (428941/2016-8) and UTFPR.
Snake design vector created by freepik - www.freepik.com

Figure 2. B; ;1
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Fig. 3 shows S(4, 4, 4) with the rainbow coloring obtained.

Figure 3. S(4,4,4)
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Introduction

In the year that Celina Figueiredo, Joao Meidanis and Célia de
Mello celebrate another decade of life, we point out the following
result which is an immediate consequence of their papers.

| All reduced indifference graphs are type 1. \

Let G be a simple graph. A total coloring is an assignment of
colors to the vertices and edges of G such that no two adjacent
or incident elements receive the same color. See Fig. 1.

'\'/:\'

Figure 1: A total coloring of the Hajos graph.

The minimum number of colors for a total coloring of G is the to-
tal chromatic number, X" (G). By definition, x"(G) > A(G) +1.
Vizing and Behzad posed the famous Total Coloring Conjecture.

Total Coloring Conjecture (TCC) [1, 2]

X" (G) < A(G) + 2

If G has x"(G) = A(G) + 1, it is type 1, otherwise it is type 2.
By Theorem 1, it is NP-complete to decide if a graph is type 1 for
the general case.

Theorem 1 [3]

To decide if a cubic bipartite graph G has x"(G) = A(G) + 1

is NP-complete.

Total coloring of dually chordal graphs

A graph is dually chordal it it is the clique of a chordal graph. Du-
ally chordal graphs generalizes known subclasses of chordal graphs
such as interval graphs and indifference graphs. Celina Figueiredo,
Jo3o Meidanis and Célia de Mello [4] presented the following re-
sult.

Theorem 2 4]

If G is dually chordal, the TCC holds. Moreover, if A(G) is
even, G is type 1.

The proof of Theorem 2 gives a polynomial-time algorithm that
yields an optimum total coloring of dually chordal graphs with even
maximum degree.

Reduced indifference graphs

G is an indifference graph if and only if its vertices can be ordered
such that those that belong to the same maximal clique are con-
secutive. This order is known as indifference order. Two vertices
are true twins if they are adjacent and belong to the same maximal

cliques. A graph is reduced if it does not contain true twins. See
Fig. 2.

Figure 2: A reduced indifference graph.

Celina Figueiredo, Célia de Mello and Carmen Ortiz [5] presented
the following interesting property on indifference graphs.

Theorem 3 [5]

If G is an indifference graph that does not contain maximum
degree true twins, then G has a matching M that covers every
maximum degree vertex. Moreover, the graph G — M, obtained
from G by removing the edges of M, is an indifference graph.

Fig. 3 exhibits an indifference graph and a matching that covers
its maximum degree vertices.

Figure 3: A matching according to Theorem 3.

We use the same technique presented in the proof of Theorem 2
and the property presented in Theorem 3 to prove Theorem 4 and,
consequently, Corollary 1. Our proof also gives a polynomial-time

November 25th, 2020

algorithm for an optimum total coloring of reduced indifference
graphs.

New result

If G is an indifference graph that does not contain maximum
degree true twins, then G is type 1.

Sketch of proof. If A(G) is even, x"(G) = A(G) + 1, by The-
orem 2. Suppose that A(G) is odd. Since G does not contain
maximum degree true twins, it has a matching M that covers
all maximum degree vertices, by Theorem 3. By Theorem 2,
x"(G — M) = A(G). Consider an optimum total coloring of
G — M as in the proof of Theorem 2. Assign a new color for
the edges of M. It the endvertices of an edge in M receive the
same color, G has maximum degree true twins, a contradiction.

So, x"(G) = A(G) + 1.
Fig. 4 presents a total coloring for the graph of Fig 2.

FaNAV ava A

Figure 4: An optimum total coloring according to Theorem 4.

Corollary 1 is an immediate consequence of Theorem 4.
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Introduction
The problem of grid embedding 1s that of drawing a graph G onto a rectangular two-
dimensional grid (called simply grid) such that each vertex v € V(G) corresponds to a grid
point (an intersection of a horizontal and a vertical grid line) and the edges of G correspond to
paths of the grid. Grid embedding of graphs has been considered with different perspectives
[2, 5, 6]. In [5], linear-time algorithms are described for embedding planar graphs having their

edges drawn as non-intersecting paths in the grid, such that the maximum number of bends of

any edge 1s minimized, as well as the total number of bends.

Objective
We are interested in embedding trees 7 with A(7) < 4 1n a rectangular grid, such that the
vertices of T correspond to grid points, while edges of 7' correspond to non-intersecting
straight segments of the grid lines. The aim 1s to minimize the maximum number of bends of a
path of 7. We provide a quadratic-time algorithm for this problem. With this algorithm, we

obtain an upper bound on the number of bends of EPG models of VPTNEPT graphs [3, 4].

Embedding trees in a grid

Let T be a tree such that A(T) < 4. Consider the problem of embedding such a tree in a grid G,

so that the vertices must be placed at grid points and the edges drawn as non-intersecting
paths of G with no bends, which we will call a model of T. See Figures 1-5 for key notations.

same tree 7. M is denoted by b,,(u, v).

b(T) = 3

Figure 4: The number of bends of tree 7 is

Figure 3: The number of bends of model M is \
b(M) = max{by(u, v) | u and v are leaves of T}. / Given a model M, let by(p,v) be the maximum

/ N(Z) _ {g7 ;. l, @} \ number of bends of a path in M having as

extreme vertices p and a leat | € V(7), over
ui(i) =g ug(i) =7 us(i) =1 uai) =0 all paths that contain v € V(7).
bi(d) =2 ba(i) =1 bs(i) =0 ba(d) =—1 Let M be a model of T and v € V(7). Let
N(wv) = {u(v) | 1 < i < d(v)} be the
neighborhood of v and by(v) = by(v, u,(v)).
For d(v) < i < 4, define “virtual” neighbors
u(v) = @ for which b(v) = —1. Assume that

“gy the neighbors (both real and wvirtual) are

n h d C g ,7 —i. S\ ] m

ordered so that b(v) > b,,(v) for all

1 <i<4. See example 1n Figure 3.
Let v € V(1) and M a model of T. We say that v i1s balanced 1f u,(v) and u,(v) are mutually 1n

the same horizontal or vertical grid line in M (and, therefore, so are u;(v) and u,(v)).

Figure 5: The neighborhood of vertex i ordered accordi
by (i, j) for all j € N().

thure 1: Two possible models M, (left) and M, (right) of th/e Q@ure 2: The number of bends of the path connecting # and 9

On Embedding Trees in Grids

and de Luca, Vitor T. F. - IME/UER]- toccivitor8@gmail.com, Oliveira, Fabiano S. - IME/UER] -
MDA fabiano.oliveira@ime.uerj.br, Szwarcfiter, Jayme L. - COPPE/UFR] e IME/UER] - jayme@nce.ufrj.br

Question

[ ]
The algorithm
Algorithm 1: Determining b(7) A tree T can be built from a Single vertex Vo by d
Input : atree 7" such that A(7") < 1 1
Output: a model M of 7" such that b(M) = b(T) scquence vy, v, ST Vn-1 of vertex addlthnS, each
Let S = (vg,0), (v1,p1); - - -, (Vn_1,Pn—1) be such that T" is incrementally new vertex V; adJ acent to exactly one vertex Pi of T
built by S . . - .
Let M be a model having a single vertex v, at some grid point fOI' all 1 <i1<n. We Wlll Call that 1'1s lncrementally
fori: < 1ton —1do

built by (Voa ®)9 (Vla pl): R (Vn—la pn—l)'
Algorithm 1 consists of iteratively adding vertices

to T and, for each new vertex v, traversing 7 In
post-order having v as the root. The operation to be
carried out 1in each visited vertex 1s to balance v 1f
1t 1s not balanced.

Add to M the vertex v; attached to the grid point of p;, in any free
horizontal or vertical grid line of p;
BALANCE (M, v, ;)

Procedure BarLance (M, p, v):

forue N(v)\ {p} do
| BALANCE (M, v, u)

If v is not balanced, then make it balanced by rearranging in M the
drawing of the four subtrees of v rooted at u*(v) (for 1 < 7 < 4),
potentially rotating and rescaling them to fit [balance step]

Theorem

EPG models of VPTNEPT graphs

Q7

Q 0, B o We provide an upper bound on the
o o . . ® ® ° * \ number of bends of an EPG representation
Q: a:
0. Qs of VPTNEPT graphs. The VPTNEPT graphs
e o o o 0 o are those that can be represented in host trees
05 with maximum degree at most 3 [3]. In [1],
o . this class i1s characterized by a family of
P, i P minimal forbidden induced subgraphs. An
o oo g oligl s o gl gl gl EPGmodel R={P;|1<i<10} is shown in
""" | v |, = 1| | il ™ | Figure 6, obtained from the family P = {0, | 1
o o ——o ® P ® =i=10j.
4. | P
o

b(7) = min{b(M) | M is a model of 7. /

Figure 6: Construction of a B,-EPG representation
with k& < b(7).
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IntrOduCtiOn / _____________ o _B_/z _____________________________________________ i \ / om ) —— \
EPG graphs were first introduced by Golumbic et al in [2] motivated from circuit layout problems [1]. i , e, TE|[_paths
In B,-EPG representations, each path has one of the following shapes x = {L, ,,"}, besides horizontal ' | "
or vertical segments. One may consider more restrictive subclasses of B;-EPG by limiting the types of P, 7y . P €°rmaﬂon j
bends allowed 1n the representation, that 1s, only the paths 1n a subset of x are allowed. P, - nel
Ex.: The ('-EPG graphs are those in which only the “.” or the “7” shapes are allowed. 2P ez, paths
Obj ective % P e :j Tik

We show that two superclasses of trees are B;-EPG (one of them being the cactus graphs). On the o e K Figure 5: B,-EPG representation of G after induction step. /

other hand, we show that the block graphs are .-EPG and provide a linear time algorithm to produce
L-EPG representations of generalization of trees. These proofs employed a new technique from
previous results based on block-cutpoint trees of the respective graphs.

Preliminaries

Consider a graph G. Let T be a bipartite
graph 1n which the parts X and Y are
such that X contains one vertex b for
each block B of G, called a block vertex,
and Y contains one vertex ¢ for each cut
vertex ¢’ of G, called as such in T.
Vertices b and ¢ form an edge if ¢’ €
B, V(B). It 1s easy to see that 7 1s 1n fact a

Figure 1: A graph and its respective BC-tree. The cut | tree. We define T as the block-cutpoint
\ vertices are marked in red. / tree of G [3] (BC-tree). See Figure 1.

B1-EPG representations
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We describe a B-EPG representation of a superclass of trees, inspired on the representation of trees
described 1n [2]. The novelty of our results 1s the usage of BC-trees to obtain EPG representations,
which will be employed to obtain B;-EPG representations of more general classes of graphs.

Theorem 1

Proof. (Sketch) The theorem 1s proved by induction. Actually, we prove a stronger claim, stated as

follows: given any graph G satistying the theorem conditions and a BC-tree 7" of G rooted at some cut

vertex r, there exists a B;-EPG representation R={P,| v € V(G)} of G 1n which:

1.  P.1s avertical path with no bends 1n R;

11.  all paths but P, are constrained within the horizontal portion of the grid defined by P, and at the
right of it.

From T (the BC-tree of G shown 1n Figure 2), build the
( a \ representation R of G as follows. First, build an
. / B \B arbitrary vertical path P, in the grid G, corresponding

%1\ /\ the root . Next, divide the vertical portion of G defined

by P, and at the right of 1t into ¢ vertical subgrids, G,,

- ‘ I\ [\ G,, . .., G, with a row space between them such that

/T ,;* le . Tl . T, i T\ the i-th subgrid will contain the paths corresponding to

\Figure 5. The rooted BC-tree T of a oraph. J the cut vertices that are descendants of B, in T. So, each
subgrid G- 1s constructed as shown 1n Figure 3.

We first represent the children of B; as disjoint L-shaped paths, all sharing the same grid column 1n

which P, lies. For each B, we build the paths 1n B,’, that correspond to vertices of B; that are not cut

vertices of G (as those in black in Figure 1), and the paths in T, belonging to G[7}], for all 1 <j <}
So, it remains to define how the paths belonging to the regions B;” and T;; will be buuilt.

Let R’ be a B{-EPG representation of B, and let P,’
be an-path corresponding » 1n R’. Since r 1s universal
to B; 1t 1s possible to transform R’ such that all

) universal vertices become vertical paths as shown 1n

k Figure 3: A subgrid G, /

Figure 4. For the T); portion of the representation, let
r; be the root of T, Applying mduction hypothesis,
SR we obtain B-EPG representations of each subtree that
have vertical paths representing each root and the
/ entire representation 1s bounded as described
previously in (11).

Thus, we can attach each one of the representations to its respective portion of the model being built,
rotated 90 degrees 1n counter-clockwise (see Figure 5).

Theorem 2

K Figure 4: Transforming R’.

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
However, the assumption that every block B; 1s -EPG allows their EPG representations to be
transformed 1nto interval models. It 1s possible to show how to build an interval model of each block,

given an -EPG representation of it. Furthermore, the EPG representations of the subtrees 7,

of B, for all i, obtained after the induction step can be transformed into .-EPG models by 90 degree
clockwise rotation so that the entire representation 1s .-EPG.
Theorem 3

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1. The
difference here 1s that every block 1s either an edge or a cycle. It 1s possible therefore to construct B, -
EPG representations of every block B,. Furthermore, the B,-EPG representations of the subtrees T,
1 <j<j, of B, for all i, obtained after the induction step can be shown possible to be attached into
vertical or horizontal regions of the cycle/edge so that the entire representation 1s B;-EPG.
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By-CPG graphs

» An undirected graph G = (V, E) is called a VPG graph ([1]) if one can associate a path in a rectangular grid with each vertex
such that two vertices are adjacent if and only if the corresponding paths intersect on at least one grid-point.

» An undirected graph G = (V, E) is then called a By-VPG graph, for some integer k > 0, if one can associate a path with at
most k bends in a rectangular grid with each vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-point.

» An undirected graph G = (V, E) is said to be By-CPG if one can associate a horizontal or vertical path in a rectangular grid with
each vertex, such that two vertices are adjacent if and only if the corresponding paths intersect on at least one grid-point without
crossing each other and without sharing an edge of the grid.

Figure: On the left, a BO-CPG representation of the graph on the right.

Laman graph

» A Laman graph is a graph on n vertices such that, for all k, every k-vertex induced subgraph has at most 2k — 3 edges, and
such that the whole graph has exactly 2n — 3 edges.

» An _*-contact representation is a B1-CPG representation which is strict and basic.

» an _*-contact representation is maximal if every endpoint that is neither bottommost, topmost, leftmost, nor rightmost makes a
contact, and there are at most three endpoints that do not make a contact.

Theorem ([4])

If a graph G has a maximal _*-contact representation in which each inner face contains the right angle of exactly one ., then G
Is a planar Laman graph.

» As a consequence, we have the following result.

Theorem

D —

Every maximal strict _-contact graph is a planar Laman graph.

L-Contact graphs

» An L-graphis a graph with a B1-VPG representation such that all the paths in the representation have the shapes {|, —,.}. We
will say that the graph is an strict _-graph if the paths only have the shape ..

» An (strict) _-contact graph is an (strict) L-graph such that all the paths in the representation do not cross each other and do not
share an edge of the grid.

» A representation of a strict L-contact graph such that no path intersects another in a bend point will be called a basic

representation.
|
-

Type 1 Type 2

Figure: Two representations of K3 as a strict _-contact graph.

Relation with planarity

» By-CPG C L-contact and there are non-planar By-CPG graphs.

Figure: On the left, a BO-CPG representation of the non-planar graph on the right.

» As a consequence, there are non-planar -contact graphs.
» _-contact C B1-CPG.

Theorem ([3])

For every k > 0 there is a planar graph G such that G is Bx_ 1-CPG but not By-CPG.

=

Theorem

If G is strict _-contact then G is planatr.

M——

S S—
1

N

Figure: The planar representation obtained from the strict _-contact representation of a graph.

Relation with chordality

Lemma

A clique In a strict _-contact graph has size at most three.

Mo—

Theorem

Let G be a chordal graph. G is strict _-contact if and only if G is K-free. Moreover, G admits a basic representation.

D —

Let 7 be the family of graphs defined as follows. 7~ contains Hy as well as all graphs constructed in the following way: start with a
tree of maximum degree at most three and containing at least two vertices; this tree is called the base tree; add to every leaf v in
the tree two copies of Ky (sharing vertex v), and to every vertex w of degree 2 one copy of K4 containing vertex w. Notice that all

graphs in 7 are chordal.

Figure: On the left the graph Hp. On the right a typical graph in 7.

Theorem ([2])

D —

Let G be a chordal graph. Let F =T U {Ks,diamond}. Then, G is a By-CPG graph if and only if G is JF-free.

» |t is immediate that . -contact graphs are Ks-free and that By-CPG C . -contact.
» Following the same ideas as in the chordal By-CPG characterization, all the graphs in 7 are forbidden subgraphs.

» As a consequence, we have the following result concerning block graphs.

Theorem

Let G be a block graph. G is _-contact if and only if G is By-CPQG.

—
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Introduccion

Todas las graficas con las que trabajamos son graficas finitas y simples. Este trabajo fue motivado por
un problema abierto del articulo de Graphs whose complement and square are isomorphic. Dada una
grafica Gz, el cuadrado de esta denotado por G2, esla grafica que consta del mismo conjunto de vértices
de G, pero uv € G? si y solamente si la distancia de v, v en G es 1 o 2. G denota al complemento de la
grafica G, en la cual tenemos el mismo conjunto de vértices y uv € G siy sélosiuv ¢ G . Decimos que
una grifica G es cuadrado complementaria si cumple G2 = G o equivalentemente G = GZ2. Usaremos
el término de squco para refirirnos al término cuadrado-complementario, por su abreviatura en inglés;
square-complement. Algunos ejemplos de graficas squco son la grafica trivial K, el ciclo de 7 vértices
(7 y la grafica de Franklin:

Figura 1: Ejemplos de graficas cuadrado complementarias.

Objetivo

Dar una respuesta al problema abierto planteado en [1, 4]: Dado un nimero par d > 4, ;existe una
grafica squco, d-regular con d? 4+ d + 1 vértices?

Desarrollo del problema

Por definicién si tenemos una grafica d-regular, tenemos que V x € G tenemos que degi(x) = d.
La longitud del ciclo mas pequefio dentro de una grafica se denomina cuello (girth) y es denotada por
g(G). Notemos que si tenemos una grafica cuadrado-complementaria no trivial G que sea d-regular,
entonces G tiene como méaximo d? + d + 1 vértices; debido a que G es regular de grado d, sin pérdida
de generalidad escogemos un vértice cualquiera llamémosle u el cual tiene d vecinos, a una distancia
dos de u tenemos a lo mas d(d — 1) vecinos mas y por ultimo el nimero de vecinos a una distancia de
al menos 3 tenemos d esto ya que G satisface la condicion de ser cuadrado-complementaria, G = G?y
estos dltimos vecinos a distancia 3 serdn los vecinos a distancia 1 de u en G2 que también tiene que ser
d-regular. Por lo tanto |G| < 1 +d+d(d — 1) + d = d° + d + 1. Recordemos que la estructura descrita
no depende del vértice elegido al inicio pues GG es d-regular. Cuando consideramos la longitud del ciclo
mas pequefio, i.e. el cuello de G, se satisface que g(G) > 5siysolosi |G| = d? + d+ 1.Las grafi-
cas que buscamos deben cumplir: g(G) = 5y ser 4-regulares, ademas de ser cuadrado-complementarias
lo que implica que |G| = 21. Un ejemplo de la estructura buscada es:
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Figura 2: Andamiaje para GG cuadrado-complementaria 4-regular con g(G) = 5.

El problema se encontraba en encontrar el conjunto de 26 aristas que completaba a G de la figura 2, y
la hacian ser cuadrado-complementaria de un conjunto total de 108 posibiles aristas; las cuales provie-
nen de las (126) = 120 y a este conjunto le quitamos las aristas que forman un 3-ciclo en cada conjunto
de vértices que se encuentran a distancia 2 del vértice superior (12 aristas), dando como resultado un
conjunto de busqueda de:

(1206) = 6909, 5987959, 706’679, 4347990, 092 ~ T X 10%*, Para abordar el problema se opt0 por usar
la herramienta de programacion de GAP [3] y el paquete de YAGS [2], con el cual se desarrollé un
algoritmo basado en principio en la técnica de Backtracking o branch and bound, con la finalidad de
podar posibilidades que no condujeran a alguna solucion disminuyendo tiempo y opciones de solucio-

nes fallidas a explorar.

Backtracking

Backtracking es una técnica algoritmica de busqueda en espacios combinatorios con estructura arbo-
rea; con énfasis en el podado de ramas inutiles, como lo es en nuestro caso, para hacer uso de esta
técnica debemos hacer énfasis en el podado de ramas inutiles ya que por medio de estas logramos acor-
tar el amplio espacio de busqueda que tenemos para las soluciones. Analizando las posibles soluciones
encontramos que las graficas tienen una simetria muy buena lo cual nos permitié encontrar un punto
clave para desechar posibilidades fallidas ya analizadas y con ello optimizar el tiempo empleado a la re-
solucion de nuestro problema, pues al 1r escogiendo aristas podemos desechar algunas configuraciones
1somorfas a otras analizadas con anterioridad.

A

./ /

Figura 3: Andamiajes con configuraciones diferentes pero isomorfas.

Resultados

Algoritmo

Después de varias versiones que lograran disminuir el tiempo y el conjunto de posibles soluciones al
problema obtuvimos un algoritmo que se compone de varias funciones, las cuales verifican cada una de
las caracteristicas que buscamos verificar que satisfagan las graficas que buscamos. Entre las cuales se
encuentran:

= Que no existan tridngulos, ciclos de tamafio 3, en G y en G~.
= Que no existan cuadrados, ciclos de tamaifio 4, en G y en G2,
= Funcion que analiza las simetrias en la grafica.

= Verifica que cada vértice no exceda el grado 4.

Graficas Cuadrado-Complementarias 4-regulares de cuello grande.
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= Funcion interna del Backtrack, verifica s1 la solucion que tenemos hasta el momento se puede com-
pletar.

= Funcion interna del Backtrack, indica si hemos encontrado una solucion de 26 aristas que completen

aG.
= Verificar que se satisfaga G = G2.

Ademas de esto se considera analizar el problema en 6 casos; los cuales provienen de ser todas las
maneras diferentes hasta isomorfismo de colocar aristas en la parte inferior de nuestro arbol sin llegar a
formar triangulos (ciclos de tamanfio 3), determinados de la siguiente manera:

LA W

LA W

N— . N— 7

LA W
—

Figura 4: Casos a considerar con las aristas posibles con los vértices en el tercer nivel del andamiaje con 0, 1, 2 y 3 aristas
respectivamente.

Con todo ello se redujo el trabajo de analizar casi 7 X 10%* de casos a tan s6lo 43 casos.

Conclusiones

Después de las horas empleadas a programar dicho algoritmo que ayude a saber s1 existen las graficas
cuadrado-complementarias 4-regulares con cuello 5, logramos dar respuesta de que dichas graficas no
existen, reduciendo el conjunto de busqueda considerablemente para dar solucién a la interrogante en
tan solo 10 minutos. Ademas de buscar alguna caracteristica que ayude a reducir mas el conjunto de
posibilidades para dar una prueba con un numero pequeiio de casos. Claro el trabajo continua analizan-
do que pasa para el caso general con graficas cuadrado-complementarias d-regulares con g(G) > 5,y
en particular parad > 6 .
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1 Introduction

Let G be a simple graph. For § C
V(G)U E(G)and C{1,2,...,k}, let c :
S — (' be a mapping such that c¢(z) #
c(y) for each adjacent or incident ele-
ments z,y € S. We say c is a k-total
coloring when S = V(G) U E(G) and
a k-edge coloring when S = E(G). See
Fig. 1 for an example. The least j and
the least £ for which GG has a j-total col-
oring and a k-edge coloring are denoted
by \"(G) and x'(G), respectively.

Figure 1: 9-total coloring for

The Total Coloring Conjecture (TCC) [1,
7] asserts that Y"(G) < A(G) + 2 for
any G. If X\'(G) = A(G) + 1, G is
Type 1; otherwise it is Type 2. To de-
cide if GG is Type 1 is NP-Complete [6]. A
eraph G|Q), S]is splitif V(G) can be par-
titioned into |, S| so that () is a clique
and .S an independent set.

Theorem 1 [2] Let GG be a split graph.
Then x"(G) < A(G) + 2. In particular,
when A(G) is even G is Type 1.

Ortiz and Villanueva [5] characterized
the split-comparability graphs.

Theorem 2 [5] A split graph G|Q, S| is
a comparability graph iff () has a parti-
tion |}, Q¢, Q| and its vertices can be
ordered ();, ()¢, (), so that for any ver-
tex s € S: N(s)NQ; = 0; if v, €
(N(s) N Q) then vy € (N(s) N Q);
and if vy € (N(s) N Q,) then v, €
(N(s)N Q).

The subset of S whose vertices are not
adjacent to (), are denoted as 5;, those
not adjacent to (); denoted as S,, and
Sy =S5\ S US.

Here we show that certain split-
comparability graphs with odd maxi-
mum degree are Type 1.

2 Previous Results

V(G
When |E(G)| > L' (2 ”J A(G) we say
GG is overfull and if G has a subgraph
H with A(H) = A(G) that is overfull,

then it is subgraph-overtull. Whenever
(& is overfull or subgraph-overfull, then

Y'(G) =AG) + 1.

Theorem 3 [3] A split-comparability
eraph G has \'(G) = A(G) iff G is not
subgraph-overfull.

Hilton proved the following result for
graphs with a universal vertex, i.e. a ver-

tex with degree |V (G)| — 1.
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i Total Coloring in Some Split-Comparability Graphs

Candida Nunes da Silva“

Theorem 4 [4] A graph (G with a uni-
versal vertex is Type 1 iff

E(G)|+ (G) > L%J

— 2

3 Our Contribution

Theorem 5 A split-comparability
graph G, with |Q;| > |Q,/|, is Type 1 if

1S
Q| > (Sz — O.5> Q.

Sketch of proof. We assume |S,| # 0,
S)| # 0 and A(G) is odd, otherwise

X" (G) is known by Theorems 1 and 4.
By Theorem 2, (; N @, = (). Assume

Q1| > 1Q,]; s0 |Q,| < @ We define a
split-comparability supergraph G’ of G
by adding a vertex v, twin to the largest
degree vertex vy € ();. Since |Q;| > |Q,]

and |Q| — |Q;| > %, G’ is not subgraph-

overfull. So, it has a A(G')-edge coloring
¢/, by Theorem 3. Fig. 2 shows G’ ob-

tained from the graph of Fig. 1.

Figure 2: 9-edge coloring for GG

Assign the color (v, x) to z, for all z in
order to obtain a total coloring of G — 5.

N/
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(Fig. 3 exhibits a partial total-coloring for

: Q)
the graph of Fig. 1.) As |Q,| < =, at
most |()| colors are used in vertices ad-
jacent or edges incident to vertices of \5,.
Since |()| < A(G) some color is available

to be assigned to each vertex y € S5, and

'(G) = A(G) + 1.

Figure 3: Extending to a total coloring
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Introduction

An L(2,1)-labeling of a simple graph G = (V, FE) is a function
f: V. — {0,...,t} such that |f(u) — f(v)| > 2 if d(u,v) = 1
and f(u) # f(v) if d(u,v) = 2, where d(u,v) denotes the distance
between two vertices u and v of G and ¢t € N. We say that a conflict
occurs if any of the necessary conditions to have an L(2, 1)-labeling
are not met. The span of an L(2,1)-labeling f is the largest integer
(label) assigned by f to a vertex of G. The A-number of G, denoted
by A(G), is the smallest number ¢ such that G has an L(2, 1)-labeling
with span t. Figure 1 exhibits an L(2,1)-labeling of the Petersen
eraph with the smallest span.

The L(2, 1)-labeling problem was introduced
by Griggs and Yeh [3] in 1992, motivated by
problems of frequency assignment to trans-

mitters. The main unsolved problem regard-
ing L(2, 1)-labelings is the Griggs and Yeh’s
Conjecture, which states that every simple
eraph G with maximum degree A(G) > 2

has A(G) < A(G)?.

Figure 1: An
L(2,1)-labeling
of Petersen Graph
with span 9.

Since Griggs and Yeh’s seminal work, A(G) has been determined
for various families of graphs |2, 3, 4]|. In particular, Georges and
Mauro (2] verified Griggs and Yeh’s conjecture for some families of
J-regular graphs and, based on their results, posed Conjecture 1.

Conjecture 1. With the exception of the Petersen Graph, every
connected 3-regular graph G has A(G) < 7.

In this work, we verify Conjecture 1 for a family of Loupekine snarks
called L Pi-snarks and present a lower bound on A(G) for its members.

Loupekine Snarks

A snark is a simple, connected, bridgeless 3-regular graph such that
its edges cannot be colored with only three colors such that every
two adjacent edges are assigned distinct colors. Snarks are related to
fundamental problems in graph theory such as the 4-Color Problem
and the 5-Flow Conjecture.

L(2,1)-labeling of Loupekine Snarks

José Robertty de Freitas Costa, Atilio Gomes Luiz

Campus Quixada, Federal University of Ceara, Ceara, Brazil

robertty@alu.ufc.br, gomes.atilio@ufc.br

Loupekine snarks were originally defined by Loupekine and first pre-
sented by Isaacs |1|. LP;-snarks are an infinite family of Loupekine
snarks and their construction is presented below.

Let k be an odd positive integer. A k-L Pj-snark G is w;
constructed from k£ > 3 subgraphs called blocks, ob-
tained from the Petersen graph P as follows: given
k copies Ry, ..., Rj_1 of P, block B; is obtained
from R; by deleting the vertices of an arbitrary path
P; C R;, for 0 < ¢ <k — 1. Figure 2 illustrates an T
arbitrary block B; with its vertices named. Vertices Figyre 2: Block B;.
xi, Ui, W;, U;, y; are called border vertices.

For all © € {0,...,k — 1}, the border vertices v; and y; of block B;
are linked to the border vertices u; 1 and x;.1 of block B; 1 (indices
taken modulo k) by edges called linking edges. The linking edges
can be {v;x;1, yui1} or {vau, ¥z b, but not both.

Any three distinct border vertices w;, w;, wy are linked to a new vertex
u; i ¢, called star vertex, by adding w; ;, and three new edges w;u;;y,
w;u;ie and weuiie to G. The previous operation can be done an odd
number ¢ of times, with 1 < g < k. Since £ is odd, an even number
k — g of border vertices remain. If kK — ¢ > 0, the remaining border

vertices are paired up and each pair w; and w; 1s linked by a new edge
w;w,, thus concluding the construction of a k-LP-snark. Figure 3

shows a 3-L Pj-snark with an L(2, 1)-labeling with span 7.
Results

Theorem 1. Every LP-snark G has A\(G) < 7.

Sketch of the proof. Given a k-L Py-snark G, we construct an L(2, 1)-
labeling f of GG with span 7. Initially, choose a block B; such that its
border vertex w; is adjacent to another border vertex w; of G. Name

this block by Bj_; and name the remaining blocks consecutively from
this one. If there is no such block, start the enumeration from any
block. For every ¢ € {0,...,k — 1}, label the vertices of block
B; as follows: f(u;) = f(x;) = 2-(2¢ mod 3), f(v;) = fly;) =
2-(2i +1mod 3), f(r;) = 6 and f(t;) = 7. Conflicts occur in this
partial labeling when k£ Z 0 (mod 3) and, in order to resolve them,
some vertex labels in By_; are changed.

UNIVERSIDADE
FEDERAL po CEARA

CAMPUS QUIXADA

©
L (2
@2 @.'.“‘
© @ © @
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Figure 3: L(2,1)-labeling of a 3-L P;-snark with span 7.

[f £ =1 (mod 3), define f(ur_1) = f(xx_1) = 1 and f(vp_1) =
flyr—1) = 3. It k = 2 (mod 3), define f(up_1) = f(xp_1) = 5,
fur—1) = flyz—1) = 3 and f(rp_1) = 1. Other conflicts can occur
depending on the adjacencies of the star vertices. All of them are
resolved so that we finally verity that a valid label can always be
assigned for every remaining unlabeled vertex without conflict.

Theorem 2. Every LP-snark G has A\(G) > 6.

Sketch of the proof. It follows from L(2,1)-labeling’s definition and
G being 3-regular that \(G) > 5. If A\(B;) > 6, then A\(G) > 6
since B; C G. We suppose that A(B;) = 5. Then, we prove that this
assumption restricts to 1 and 4 the labels that a border vertex w; can

have. This restriction leads to a contradiction. Thus, A(B;) > 6.
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Introduction

In information theory, there is a common trade-off that arises in data trans-
mission processes, in which two goals are usually tackled independently: data
compression and preparation for error detection. While data compression
shrinks the message as much as possible, data preparation for error detection
adds redundancy to messages so that a receiver can detect, or fix, corrupted
ones. Data compression can be achieved using different strategies, often de-
pending on the type of data being compressed. One of the most traditional
methods is the method of Huffman [1|, that uses ordered trees, known as
Huffman trees, to encode the symbols of a given message. In 1980, Ham-
ming proposed the union of both compression and error detection through a
data structure called Hamming-Huffman tree |2|, which extends the Huffman
tree by allowing the detection of any 1-bit transmission error. Determining
optimal Hamming-Huffman trees is still an open problem.

Contribution

In this work, we describe an algorithm to determine optimal two level
Hamming-Huffman trees when the symbols have uniform frequencies.
That is, the algorithm builds optimal Hamming-Huffman trees in which
all leaves lay in at most two different levels. Also, considering experimen-

tal results, we conjecture that, for uniform frequencies, optimal two levels

Hamming-Huffman trees are optimal in general.

Hamming-Huffman Trees

A Huffman tree (HT) T is a rooted strict binary tree in which each edge
(u,v), v being a left (resp. right) child of u, is labeled by 0 (resp. 1) and
there is a one-to-one mapping between the set of leaves of 1" and the set X
of symbols of the message M to be sent. Given 1T', each symbol a of M is
encoded into a binary string c¢(a). Such encoding is obtained by the directed
path from the root of 1" to the leaf corresponding to a. Over all possible trees,
the HT for M is a tree in which its cost, defined as the sum of p(a)|c(a)| over
all a € X, is minimized, where p(a) stands for the probability of occurrence
of a and |c(a)| is the length of the string c(a).

A Hamming-Huffman tree (HHT) T is an extension of the HT in which,
for each leaf labeled with a € Y, there exist leaves ey, ..., ex with k = |c(a)]
such that each c(e;), 1 < ¢ < k, differs from ¢(a) in exactly one position. The
leaves e, ..., e are called error leaves of a. When c(e) is identified during
the decoding process, where e is an error leaf, it means that a transmission
error is detected. The cost of HH'T"s is defined exactly in the same way as
the cost of HTs. We define an HH'T' as optimal if its cost is minimum.
Figure 1 depicts an HT with cost 2.4 and an optimal HH'T with cost 3.8,
both having 5 symbols with uniform frequencies, that is, symbols with a
same probability of occurrence.

Fabiano S. Oliveira 2

MDA 'Universidad de Buenos Aires, Argentina

Two Level Hamming-Huffman Trees
Paulo E. D. Pinto 2

’Universidade do Estado do Rio de Janeiro, Brazil

(a) (b)

Figure 1: Examples of (a) Huffman and (b) optimal Hamming-Huffman trees, for 5 symbols
with uniform frequencies. White (resp. black) leaves represent symbol (resp. error) leaves.

Hamming-Huflman trees with leaves in two levels

Consider the problem of finding an optimal HHT for ¢ uniform-frequency
symbols such that these symbols are placed on at most two levels. We will
describe an eflicient algorithm for this problem. There is a one-to-one map-
ping between the leaves of a full binary HHT having height n and the vertices
of an hypercube @),,, in which a leaf a corresponds to c(a) € V(Q,). The
problem of finding the minimum number of error leaves in a tull binary HHT

T, of height n with £ symbol leaves, is equivalent to that of finding one that

minimizes |N(L)|, over all independent sets L of cardinality ¢ in n-cubes.
Define ¢(¢, n) as this minimum value.

Concerning an optimal HHT with leaves on two levels hy < hs, consider
that there are ¢; symbol leaves on level hy, for some 1 < hy < [logl]| + 1
and 1 < ¢, < min{¢, 2"} Therefore, the minimum number of er-
ror leaves is (¢, hy) and thus r(€1, h) = 2" — (¢, + ©(¢1, h1)) is the
number of leaves that neither are symbol nor error leaves. The remaining
(o = ¢ — {1 symbols are distributed among the subtrees rooted at these
r(f1, hy) leaves. To accomplish this, each subtree is required to have pre-
cisely height h'(¢1, hy) = [log T<€fa2h1)_‘ - 1. The strategy is to choose among
all the possible trees, one that has minimum cost. Given hy, £; and £, the

cost of each tree is given by

Chy, it £ =1,

T(hl,gl,g) = {+o0, it 7’(61, hl) =(0and ¢ > (
Chy + C5h' (47, hy), otherwise.

The cost of an optimal tree for £ symbols can be obtained by

min{T'(hy, £1,0) : 1 < by < [log €] + 1,1 < £ <min{¢,2"7'}}

Concerning the complexity, for each h;, there are at most 21~! possible values
for ¢1. Therefore, there are at most 142+ 22 4+ ... + 2/l = ©(¢) distinct
pairs of values hq, £ to be computed for T'. Moreover, for each computation
of T'(hy,¢1,£), the evaluation of (¢, hy) is required, which can be done in
time O(h?) [3]. So, the complexity of the method is O(¢log”¢). Figure 2
depicts this strategy. Nodes with “s” represent symbol leaves, black nodes
represent the error leaves, and dashed nodes represent the tree leaves.
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Figure 2: Hamming-Huffman tree with leaves on two levels h; and ho.

Regarding general Hamming-Huffman trees

We have implemented two algorithms. The first one is a backtracking that
finds an optimal Hamming-Huffman tree. The second one is a dynamic pro-
eramming algorithm that evaluates a lower bound for the cost of an optimal
Hamming-Huffman tree. Both consider £ symbols with uniform frequencies.
With respect to the backtracking, we have tested all values of 1 < ¢ < 38,
concluding that there is always an optimal Hamming-Huffman tree with at
most two levels. Concerning the dynamic programming algorithm, we have
tested all values of 1 < £ < 400. We have verified that, for some cases, the
lower bound was equal to the cost of the corresponding optimal two level
HH'Ts.

Considering the results of the experiments, we believe that optimal HHT"s for
symbols with uniform frequencies indeed have leaves on at most two levels,
as formalized in the following conjecture.

Conjecture

Let > be a set of symbols having a same frequency. There exists an
optimal Hamming-Huffman tree associated with > in which all leaves are
on at most two levels.
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1. Introduction

A graph is a mathematical model used to represent relationships between ob-
jects. The general characters that both of these objects and their relationships
can assume, allowed the construction of the so-called Graph Theory, which
has been applied to model problems in several areas, such as Mathematics,
Physics, Computer Science, Engineering, Chemistry, Psychology and industry.
Most of them are large scale problems.

Fullerene graphs are mathematical models for carbon-based molecules experi-
mentally discovered in the early 1980s by Kroto, Heath, O’Brien, Curl and Smal-
ley. Many parameters associated with these graphs have been discussed to
describe the stability of fullerene molecules.

By definition, fullerene graphs are cubic, planar, 3-connected with pentagonal
and hexagonal faces.

The motivation of the present study is to find an efficient method to obtain a
4-total coloring of a particular class of fullerene graphs named fullerene nan-
odiscs, if it exists.

2. Basic Concepts of Graph Theory

This section is based on the reference Bondy and Murty, 2008.

Definition 1. A graph G = (V(G), E(G)) is an ordered pair, where V(G) is a
nonempty finite set of vertices and E(G) is a set of edges disjoint from V (G),
formed by unordered pairs of distinct elements from V(G), that is, for every
edge e € E(G) thereis wand v € V(G) such that e = {u, v}, or simply e = uw.

If uv € E, we say that v and v are adjacent or that « is a neighbor of v, and that
the edge e is incident to « and v, and v and v are said to be extremes (or ends)
of e. Two edges that have the same end are called adjacent.

The degree of a vertex v in G, represented by d(v), is the number of edges in-
cident to v. We denote by §(G) and A(G) the minimum and maximum degrees
respectively, of the vertices of the graph G.

A graph G is said connected when there is a path between each pair of ver-
tices of G. Otherwise, the graph is called disconnected.

A cubic graph is one in which all
vertices have three incident edges
and in this case, all vertices have de-
gree 3. Cubic graphs play a funda-
mental role in Graph Theory.

Figure 1: Cubic Graph.

A graph G is planar if there is a representation of GG in the plane so that the
edges meet only at the vertices, that is, the edges do not cross. Such a rep-
resentation of G is said to be embeddable or planar. A planar representation
divides the plane into regions called faces. There is always a single face called
external or infinite, which is not limited (has infinite area). The outer bound-
ary or cycle of a connected planar graph face is a closed walk that limits and
determines the face.
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Two faces are adjacent if they have a
common edge between their bound-
aries. We denote the boundary of
f by o(f). If fis any face, the de-
gree of f, denoted by d(f), is the
number of edges contained in the
closed walk that defines it. In a pla-
nar connected graph with f faces, n
vertices and m edges, we have that
n+ f —m = 2, which is known as
Euler’s formula.

Figure 2: Planar Graph.

2.1 Total Coloring

In graph theory, coloring is a color assignment to the graph elements, subject to
certain restrictions. The coloring study started with the Four Color Conjecture,
which deals with determining the minimum number of colors needed to color
a map of real or imaginary countries, so that countries with common borders
have different colors. This conjecture was proposed by Francis Guthrie in 1852.
After 124 years, the Four Color Conjecture was demonstrated by Kenneth Ap-
pel and Wolfgang Haken with the help of a computer. The famous Four Color
Theorem is a reference in the area of Graph Theory.

Definition 2. A total coloring C! of a graph G is a color assignment to the
set UV in acolorset C' = {cy, 09, ...,c}, k € N, such that distinct colors are
assigned to:

e Every pair of vertices that are adjacent;
¢ All edges that are adjacent;
e Each vertex and its incident edges.

A k-total coloring of a graph G is a
total coloring of G that uses a set of
k colors, and a graph is k-total col- 3 1
orable if there is a k-total coloring of
(. We define as the total chromatic
number of a graph G the smallest
natural k£ for which G admits a k-total
coloring, and is denoted by x"(G).

20 o 3

Figure 3: Graph with 4-total coloring.

Behzad and Vizing independently conjectured the same upper bound for the
total chromatic number.

Conjecture (Total Color Conjecture (TCQC))
For every simple graph G,

X'(G) < A(G) + 2.

The TCC is an open problem, but has been checked for several classes of
graphs. Knowing that x"(G) > A(G) + 1, and from the TCC, we have the
following classification: If y'(G) = A(G) + 1, the graph is Type 1; and if
X"(G) = A(G) + 2, the graph is Type 2.

For cubic graphs, the TCC has already been demonstrated, which indicates
that these graphs have total chromatic number 4 (A + 1) or 5 (A + 2). However,
the problem of deciding which are Type 1 or Type 2 is difficult.

3. Fullerene Graphs

3.1 Fullerene: A small history

In 1985 a new carbon allotrope was reported in the scientific community: Cigp.
A group of scientists, led by Englishman Harold Walter Kroto and Americans
Richard Errett Smalley and Robert Curl, trying to understand the mechanisms
for building long carbon chains observed in interstellar space, discovered a

highly symmetrical, stable molecule, composed of 60 carbon atoms different
from all the other carbon allotropes.

The Cg has a structure similar to
a soccer hollow ball (Figure 4),
with 32 faces, being 20 hexago-
nal and 12 pentagonal. They de-
cided to name the Cysy buckminster-
fullerene, in honor of American ar-
chitect Richard Buckminster Fuller,
famous for his geodesic dome con-
structions, which were composed of
hexagonal and pentagonal faces.

At the end of the 1980s, other carbon
allotrope molecules with similar spa-
tial structure to the Cy, were reported
called fullerene molecules (Kroto et
al., 1985).

Figure 4: Molecular structure of Cyy.

The buckminsterfullerene was the first new allotropic form discovered in the
20th century, and earned Kroto, Curl and Smalley the Nobel Prize in Chem-
istry in 1996. Nowadays fullerene molecules are widely studied by different
branches of science, from medicine to mathematics. These molecules are sup-
posed to contribute to transport chemotherapy, antibiotics or antioxidant agents
and released in contact with deficient cells.

3.2 Fullerene Graphs

Each fullerene molecule can be de-
scribed by a graph where the atoms
and the bonds are represented by
the vertices and edges of the graph,
respectively. In addition, fullerene
graphs preserve the geometric prop-
erties of fullerene molecules, i.e.,
fullerene graphs are planar and con-
nected. Moreover, all vertices have
exactly 3 incident edges and all
faces are pentagonal or hexagonal
(Nicodemos, 2017).

Figure 5: Fullerene Graph.

3.3 Fullerene Nanodiscs

The fullerene nanodiscs, or nanodiscs of radius » > 2 are structures composed
of two identical flat covers connected by a strip along their borders. While in
the nanodisc lids there are only hexagonal faces, in the connecting strip, 12
pentagonal faces are arranged side by side.

A nanodisc of radius r > 2, represented by D, ;, can be obtained through its flat-
tening. The idea is to arrange the faces in layers around the nearest previous
layer starting from a hexagonal face (Nicodemos, 2017).

The sequence
{1,6,12,18,...,6(r — 1),6r,6(r —1),...,18,12,6,1}

provides the amount of faces on each layer of
nanodisc planning D,, while » > 2. In ad-
dition, this sequence states that a D, nan-
odisc has (6r* + 2) faces, 12r? vertices and
(2r + 1) layers. The 12 pentagonal faces will
always be distributed in the same layer with
other (6r — 12) hexagonal faces. This is the

key property of fullerene nanodiscs. Figure 6: Nanodisc D.

4. Goals

To prove that a cubic graph is Type 1, it suffices to show a total coloring with 4
colors. However, to demonstrate that a cubic graph is Type 2, we need to show
that it has no total coloring with only 4 colors. Thus, finding Type 2 cubic graphs
IS more complicated.

We define the girth of a graph G as the length of its shortest cycle. Until now,
every Type 2 cubic graph we know has squares or triangles. So, we could think
that there are no Type 2 cubic graphs with girth at least 5. Thus, we investigate
the following question.

Question
(Sasaki, 2013) Does there exist a Type 2 cubic graph with girth at least 57

Motivated by this question, we analyze the family of fullerene nanodiscs, in
search of evidences that can positively or negatively contribute to this question.
In this context, we look for an efficient algorithm to find a 4-total coloring of the
fullerene nanodisc, if this coloring exists.

5. Results

After a few attempts using the brute force
method, we were able to obtain a 4-total col-
oring of the D, nanodisc, with » = 2. There-
fore, Dy i1s Type 1, which contributes to the
evidences that the previously proposed ques-
tion has a negative answer.

Figure 7: A 4-total coloring of D.

6. Conclusion

We will continue the study of total coloring of nanodiscs, looking for an algo-
rithm that gives a total coloring of the graphs of the infinite family of fullerene
nanodiscs, also seeking to answer the question previously proposed.
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Introduction

This work aims at presenting the uniformly clique-expanded graphs and Its
results on global defensive alliance and total dominating set problems. Those graphs
are related to Sierpinski graphs [5] and subdivided-line graphs [1]. We show the
minimum cardinality of the global defensive alliance for some particular situations
of uniformly cligue-expanded graphs, and we also relate that cardinality to the total
dominating set number for graphs having a path or cycle as the root.

Basic Definitions

Consider ¢ = (V, E) a finite, simple, and undirected graph. We write P,, C,_,
and K, for a path, cycle, and clique of the order n, resp. For the closed (resp. open)
neighborhood of a vertex v € V, we denote it by N|v] (resp. N(v)). Analogously,
we use N[S] (resp. N(S)) for the closed (resp. open) neighborhood of a vertex subset
S S V. Avertex subset S € IV is said a dominating set if N[S] = V. Moreover, we
call the subset S by total dominating set only for N(S) = V. Now, S Is a defensive
alliance if it satisfies |[IN[v]|n S| = [N(v) n (V/S)| for every v € S. When S is both
a defensive alliance and a dominating set, we say S Is a global defensive alliance.
We denote y;(G) (and y,(G)) as the minimum cardinality of a total dominating set
(and global defensive alliance) of G.

The Main Definition & an Example

We say that a graph H Is a uniformly clique-expanded graph if there exist a
graph G and a clique K, with n = A(G) (maximum degree of ) satisfying: (1)
V (H) consists of vertices from K,;, which is a copy of the clique K, for each vertex
vof G, and (2) E(H) contains edges of all cligue copies, and every edge (u)(v)
linking a vertex (u) € K to some (v) € K} since uv € E(G) and no edges coincide
end-vertices In H besides the ones inside of cliques. G Is the so-called root of H. See

an example in Figure 1. Y
G I
Q H
Figure 1: The graph H can be obtained from the root ¢ and the clique K,, and so it is a uniformly clique-

expanded graph.

Results

Theorem 1: Let H be a uniformly clique-expanded graph from a root G and a clique
K. . lfnisevenand A(G) < g then y,(H) = §|V(G)\.

Theorem 2: Let H be a uniformly cligue-expanded graph from a root ¢ and a clique

: n-—1 _ . n+1l n—1
K, If nis odd and A(G) < —-, then:y,(H) = Zd(v)<"7_1 BRI P

all u € V(G), where d(u) 1s the degree of v In G.
Now, the next theorem arises from properties in [2,3,4].
Theorem 3: Let H be a uniformly clique-expanded graph from a root G € {F,, C,},
q = 2,and aclique K. We have y;(H) = q + g mod 2, and if:
L. G 1sacycle and:
a 2<n<3,theny,(H) =y,(H);
b. 4<n <S5, theny,(H) = [%q;
c. n=6,theny,(H) = [Qq
iI. G 1S apath and:
a n=2, theny,(H) =y;(H)— 1 whether p = 1(mod 2) or y,(H) = y;(H)
otherwise;
b. n = 3,then,y,(H) = y,(H):
c. n=4theny,(H) = %q.

n-—1

d n =25, then )/a(H) = Tq
e n=6,theny,(H) = [Qq

Conclusions & Remarks

The uniformly clique-expanded graphs are particular cases of line graphs of
bipartite graphs since we can verify that they are (claw,diamond,odd-hole)-free.
Thus, we presented preliminary results that somehow are important to the well-
known superclass.
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The annihilation number is a graph invariant used as a sharp
upper bound for the independence number. In this poster, we
present bounds and Nordhaus-Gaddum type inequalities for the
annthilation number.

atQg

We also investigate the extremal behavior of the invariant and
showed that both parameters satisty the interval property. In
addition, we characterize some extremal graphs, ensuring that

the bounds obtained are the best possible.

The independence number of a graph is the cardinality of a
largest set of mutually non-adjacent vertices. It is not always
possible to determine the number of independence of a graph,
since this is a well-known widely-studied NP-hard problem, and
for this reason the approximation of the independence number
through inequalities represents a relevant research topic.

/
\

The annihilation number is a polynomial time computable
upper bound for the independence number introduced by R.

Pepper and S. Fajtlowicz [1,2].

Definition

The annihilation number of G, denoted by a(G), can be defined
as the largest integer k such that the sum of the smallest k
degrees of graph G was at most its number of edges e(G), that
LS

r‘

k
keN:Y d;<e(G)r,
(=1

-

where d; is the i-th smallest degree of G.

a(G) = max <

The annthilation number and the independence number are used
to investigate the relationship between the reactivity of an or-
ganic molecule, represented by a graph, and its independence
number. More precisely, the research states that, for a fixed
number of vertices, molecules with a lower independence num-
ber are, in general, less reactive than molecules with a greater
independence number. This study is known in organic chemistry

as the independence-stability hypothesis [2].
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The Nordhaus-Gaddum problem is related to find lower and
upper bounds on the sum and the product of the invariant of a

graph and its complement, denoted by G° [3].

The Nordhaus-Gaddum problem was studied for several domi-
nation parameters associated with the annihilation number, such
as the independence number, the domination number, the Roman
domination number, the total domination number, among others.

This establishes a valuable connection between the annthilation
number and the Nordhaus-Gaddum problem.

/

Sharp Bounds for the Annihilation Number
of the Nordhaus-Gaddum type

Marco Pulitt
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Let G be a collection of graphs and & : G — R be a graph
parameter defined on §. We say that & has the interval property
on G if £(G) = INZ, for some interval | C R [4].

In other words, a graph parameter satisfies the interval pro-
perty if each integer value in an interval is realized by at least
one graph. The interval property generalizes the behavior of a
parameter in an interval making it a relevant research topic.

/

\

We present bounds for the annihilation number of a graph and
prove that those bounds are the best possible. To state the
result, we denote by K, the complete graph on n vertices.
Theorem
Let & be a graph of order n. Then
n
—| < a(G) <n.
2
Equality holds in the upper bound if and only it G is isomorphic
to I7/<1.

It ¢, is a non-empty k-reqgular graph then the equality holds
in the lower bound.

As a consequence, we show that the annthilation number
satisfies the interval property.

Interval Property for a(G)
1< k<n-1.

Let n and k be integers such that L%J
It & is isomorphic to

(n — k)K; U (2k — n)Ky,

= k.

then a(G)

We present Nordhaus-Gaddum inequalities associated with the

annthilation number and ensure that they are the best possible.

To state the result, we denote by S, the star graph on n vertices.
Theorem

Let GG be a graph of order n. Then

n n
ZPJSMQ+amﬂ§nIl}

2 2
For n even, the equality holds in the upper bound it and only
it GG or (¢ is isomorphic to nkj.

For n odd, the equality holds in the upper bound if and only
it G or (¢ is isomorphic to nKj or Sy 41 U (n — d,, — 1)Ky, for

L%J <d,<n-1.

It G and G are non-empty graphs and G is a k-regular graph
then the equality holds in the lower bound.

We then show that a(G) + a(G°) satisties the interval property.

Interval Property for a(G) + a(G°)

Let n and k be integers such that 2 L%J +1< k< n+ L%J — 1.
It i is isomorphic to

[ [
[ZJ /<) K> U (2/<—2[§J —n) K,

k.

(n+

then a(G) + a(G°)

We obtained important structural information about the
graphs that satisfy the equality in the upper bounds. In particu-
lar, we can observe that, in general, such graphs have few edges.

The lower bounds are satisfied by a large number of graphs and,
consequently, their characterization is important for understan-
ding the extremal behavior of the annihilation number.
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Dados un grafo G' con conjunto de vértices V(G) y k € N,
E<min{dv): veV(G)}+1, D C V(G) esun
conjunto k-upla dominante en GG si

IN[v|NnD| >k YveV(QE).

N |v] : vecindad cerrada del vértice v

k=2
D = {’U39 ’04} D = {vlv U3, US}
Problema de la k-upla dominacién (PkUD), k € N fijo

Dado G, el problema consiste en hallar
Yxk(G) = min {|D| : D es conjunto k-upla dominante en G'}

[Harary & Haynes, 2000].
@ NP-Completo, aun en grafos cordales [Liao & Chang, 2003].

@ P1UD, lineal en grafos arco-circulares [Hsu & Tsai, 1991].
@ Complejidad no conocida de PEUD en grafos arco-circulares para k > 2.

Una subclase de grafos arco-circulares:

Grafo web: W™ n,meN m>1, n >2m+ 1.
V(W™) = {vi1,v2,:+ ,Un}.

EW™) ={vv; : j=1=xl (modn), le{1,.--- ,m} }.

XN

5>

>
7/

PkUD en grafos web W'": Antecedentes

Teorema [Argiroffo, Escalante & Ugarte, 2010]
nmeN: n=c2m+1)+r, ceN, 0<r < 2m.

2c, r=20
@ Yx2(W™) =< 2¢+ 1, O0<r<m
2c+2, m+1<r<2m.
ok[ - J< ﬂWﬂ<k[ ] V k<2
m.
om + 1] — "R = o r) =

Teorema [Dobson, Leoni & Lopez Pujato, 2019]
nmeN: n=c2m+1)+r, ceN, 0<r < 2m.

, V k<2m+ 1.

Tk (W) = [zfm + 11

Objetivo: Dado W', presentar un algoritmo que devuelve un
conjunto k-upla dominante en W' de tamaio v, (W'™).

Notacion:

nmeN: n=c2m+1)+r, ceN, 0<r<2m,
M :=med(2m+1,7), [L,z]y:={z€eN: 1< 2z<=z}.
e Paracadat € [1, M| :

2] ,; — clase de equivalencia de ¢ médulo M,
Si = [¢], N [1, n]y

Lema

o {Si}f;\il es una particion de [1, ] .

n o
Olsz‘:M V’LE[I,M]N.
Ildentificamos:

] ES; > Unyj € V(W,,T) (suma mod m en los subindices, en [1,n]).

Corolario

M = ey . o n
{S;}:". es una particién de V(W) en conjuntos de tamafio —.
i " M

Ejemplo sobre V(W) :
2m+1=9,r =6, mcd(9,6) =3 = M.

S: = [1],N[1,15]y = {1,4,7,10,13}
: :3m :1715:N {27578911914}
S3 = [3], N [1,15]y = {3,6,9,12,15}

&
||
Y

Propiedades de los conjuntos de la particion de V(W '™):

Dado W™, para cada v € V(W'™) y cada 7 € [1, M| se tiene
N [v] N S;| =1, i.e. S; es conjunto l-upla dominante de W',
donde 2m +1=IM, | &€ N.

Proposicion 2:
Dados W' y | € N tal que 2m + 1 = [M, se tiene
n

’Yxl(WrT) — M

Proposicion 3:
Para cada 7 € [1, My se tiene

S; = L

te[0, n/M—1]y

{fwe[ll,n]:w=t1+t(2m+1) (modn)}.

Definicion: parat, 7 € V(W™), jes l-contiguo ai si

j=t+2m -+ 1 (mod n).

@ La 1-contiguidad induce en cada .S; un ordenamiento tal que,
empezando por 2, cada vértice se obtiene del anterior, como un
«movimiento circular» de 2m -+ 1 posiciones.

@ Procedimiento PROC(n,m,i) — devuelve (S;) (S; con el
ordenamiento).

Procedimiento DOM (n, m, (S;), o) — devuelve un conjunto c-upla dominante en
Whdondeae N, a<ly 2m+1=1IM.

t = 0 .. (indica cudl fue el iltimo elemento incorporado a D segiin (S;)).

h=1

DIV (n, 2m + ]_) ....(obtiene el resto r de la division entera).

M = mecd(2m + 1,7)

D =10
. , n
mientras h S a N 1 S —— ....(h indica que D serd un conjunto h-upla dominante en W™ ).
1t =t 4+ 1 .. .(indica cuil sers el préximo elemento a incorporar a D segiin (S;)).
. j : n
mientras s; +2m <n A 1t < —
_ J
D =DuU{s;}
1 =1+ 1. Fin
D =DuU{s]}
h=h+1
t =1 Fin

Fin Procedimiento

ALGORITMO: Conjunto k-upla dominante minimo en W' (k-fijo)

Entrada: n € N, m € Nconn > 2m + 1.
Salida: Un conjunto k-upla dominante minimo D en W™,

1: DIV(n,2m + 1) y obtener resto 7.

2: M := mecd(2m + 1,71).

3: DIV(2m + 1, M) y obtener cociente .

4: PROC(n, m, 1) y obtener (S7).

5:Si k < [ luego D =DOM(n, m, {S1), k).

sino (k > 1) hacer DIV (k,1) y obtener cociente c y resto 7.

D= DOM(n,m, (S,),r) UPROC(n,m,2) U..- U PROC(n,m,c+1).

c+1
D = DOM(n,m, (S1),7) U | | S;.
1=2
ALGORITMO LINEAL.

Aplicando el algoritmo en Wi

'7><k(W145) D
Yx1(Wis) = 2 {vs, v14}
Yx2(Wik) = 4 {vs, V14, Vs, U2 }
Yx3(Wi) =5 {vs, V14, Vg, V2, V11 }
7><4(W145) =7 {’057 V144 U8y U2, V114 Usy /015}
Yxs5(Wi) =9 {vs, V14, Vs, V2, V11, Vs, V15, Vg, U3 }
vx6(Wis) = 10 {vs, v14, Vs, V2, V11, V6, V15, Vg, U3, V12 }
Yx7 (W) = 12 {vs, V14, V8, V2, V11, V6, Vis, Vo, U3y V12, U7y U1 }
Yxs(Wis) = 14 {vs, v14, Us, V2, V11, Vg, V15, Vg, V3, V12, U7y V1, V10, Vs }
7x9(Wf15) = 15 V(W145)
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1 Introducao

As rotulacoes £ (h, k) foram introduzidas como uma
generalizacao natural das rotulacoes £ (2,1) [1], estas
conhecidas por sua importancia para o problema de
atribuir canais em redes [2].

Sejam h,k € Z-y e G um grafo simples. Uma rotulacao
L' (h,k)de G é uma funcao o: V(G) — Z tal que:

(i) lo(u)—o(v)| = h, Vuv € E(G);
(i1) |o(u)—o(v)| =k, Yuw,wv € E(G), u #v.

L h+k

k Sendo o uma rotulacao & (h, k) de G:

A r(0) = max {o(u)—o(v)};

N, )= max fotn-a()
, e A, +(G) =min{A, +(0)}.
V(G = 2h ek nk(G) = miniAy (o)}

O span foi estudado apenas em classes de grafos basi-
cas, como ciclos e caminhos [3], ou classes em con-
textos muito restritos [1, 4|. Neste trabalho, determi-

/
namos o span dos Sunlets C,,, obtidos a partir do C,,
adicionando-se um pingente a cada vertice do ciclo.

Outras classes relacionadas que estao sob investigacao
sao os Caterpillars e os Multisunlets, os ultimos obtidos
adicionado-se possivelmente mais de um pingente a
cada vertice do ciclo.

Financiado parcialmente por CNPq (Proc. 425340/2016-3) e CAPES.

2 O span dos Sunlets

Sejam h,k,n € Z- tais que h > k e n > 3. Entao:

h+3ksen=5eh<2k;
h+3ksen=0 (mod 4) e h > 2k;
h+4ksen=2 (mod 4) e h > 3k;
2h + k nos demais casos.

/\h,k(Cn) —

Esbogco de demonstracao.

(=) Por contradi¢ido, suponha que exista 0 com span
menor do que o enunciado pelo teorema. Os rotulos
sao particionados em trés conjuntos. Por exemplo, nos

casos em que )\hk(C) 2h + k,
X1=1{0,1,...h—k -1},
Xo={th—-kh—k+1,.,h+2k—-1},e
Xz={h+2k,h+2k+1,..,2h+k—1}.

Por um lado, mostramos que os rotulos dos vértices do
ciclo nao podem pertencer a X, e, por outro, que nao é
possivel utilizar apenas rotulos de A} e A5 para o ciclo.

A7

A3

?

Cason =1 (mod 2) Cason=2 (mod 4)e n < 3k

(<) Construa a rotulagao por blocos pré-definidos a
partir de casos-base.

R 0 0——0
2h+kT—0h+k
k k ® 0k
Cason=0 (mod 3)

2h+k k

®
i— h+k

—> 2h+k »——@k

2h+k .O/

T IT |

0 k
Cason=1 (mod 3)

2h+k
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Resumo

Neste trabalho, investiga-se a existéncia de em-
parelhamento perfeito no produto cartesiano
de duas arvores sem emparelhamento perfeito,
focando-se no caso de arvores do tipo caterpil-
lar. Especificamente, € descrita uma familia in-

finita de caterpillars com um numero par de

vértices e sem emparelhamento pertfeito tais que

o produto cartesiano de duas quaisquer destas
arvores possui emparelhamento perteito.

Palavras-chave: Produto cartesiano de grafos;
Emparelhamento perteito. Caterpillar.

Introducao

Sejam (1, Go grafos com conjuntos de vértices
Vi =Auy,...,u} e Vo = {vy, ..., vs}, respecti-
vamente. O produto cartesiano de (; por
(9, denotado G1G5, € o grato com conjunto de
vertices V' = V) x V5, no qual (u;,v;) e (u, vy)
sao adjacentes quando u; € adjacente a u; em G
ej = tour = 1[ewv; ¢adjacente a v; em Gy,
1<l <r, 1<g.t<s.

Um emparelhamento em um grafo G = (V, F)
¢ um subconjunto M do conjunto de arestas E tal
que nenhum par de elementos de M possul vér-
tice em comum. Dizemos que o emparelhamento
M satura um vértice v de GG quando alguma
aresta de M que incide em v. Dizemos que M € um
emparelhamento perfeito quando M satura
todos os vértices de G. Se o grafo G com n vértices
admite emparelhamento perfeito M, entao n € par
e M tem cardinalidade n/2. Um grafo que admite
um emparelhamento perteito € chamado perfeita-
mente emparelhavel.

E conhecido [1] que se G ou Gy é perfeitamente
emparelhavel entao GGy também é. Em 2015,
A. R.Almeida (|2|), exibiu um grafo G sem empa-
relhamento perfeito tal que GLIG possui empare-

lhamento perteito e levanta a questao: como carac-
terizar grafos G sem emparelhamento perfeito tais
que GUG possua emparelhamento perfeito?

Dizemos que uma arvore I’ é do tipo caterpillar
(ou, brevemente, uma caterpillar) se ao retirar-
mos todos os vertices pendentes, resta um caminho,
chamado corpo da caterpillar.

Neste trabalho, investicamos a questao acima pro-
posta na familia das caterpillars.

Uma tultima definicao a ser usada em nosso resul-
tado ¢ dada a seguir:

Definicao.|3| Dado G = (V, E), uma particdo
P=A{Vi,Vo,--- ,Vi.} deV ¢ dita uma particao
por estrelas induzidas de G quando para
cada 1,1 < 1 < k, o subgrafo induzido G|V;| de
G for isomorfo a uma estrela.

Figure 1:Exemplo de caterpillar.

AT

Figure 2:Uma particao por estrelas induzidas formada por
Ko, K5 K1, K11 e K3

Resultados

Teorema 1 Seja C uma caterpillar que admite
uma particao por estrelas induzidas que, da es-
querda para a direita, é descrita como: uma quan-
tidade impar de K »’s cujos centros coincidem com
0 corpo, seguida por um numero par de Kj;’s e,
por fim, outra quantidade Impar de K 5’s com os

centros coincidindo com o corpo. Entao o produto
cartesiano de C' por Kjo possul emparelhamento
perteito.

Ideia da prova, com um exemplo:
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Figure 3:Etapa 1.
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Figure 4:Etapa 2.
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Figure 5:Ktapa 3.

Corolario Sejam C5 e Cy caterpillars tais como
a descrita no Teorema 1. Entao C1CS é perteita-
mente emparelhavel.

Conclusoes

Descrevemos uma familia infinita de caterpillars
sem emparelhamento perfeito tais que o produto
cartesiano de qualquer par delas possui emparel-
hamento perteito.
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Introduction

Graph matching problems are well known and studied, in which we want to find sets of
pairwise non-adjacent edges[1]. This work focus on the study of matchings that induce
subgraphs with special properties [2][3]. For this work, we consider the property of being
connected, also studying It for weighted or unweighted graphs. For unweighted graphs, we
want to obtain a matching with the maximum cardinality, while, for the weighted graphs, we
look for a matching whose sum of the edge weights Is maximum.

Objective

The problem of maximum connected matching is polynomial[1]. We show Ideas that lead to
two linear algorithms. One of them, having a maximum matching as Input, determines a
maximum unweighted connected matching. The complexity of the maximum weighted
connected matching problem is unknown for general graphs. However, we present a linear
time algorithm that solves it for trees.

Unweighted Connected Matchings

For a graph G and a matching M, we denote G|M] as the subgraph induced by the vertices of
M and N (v) as the set of neighbors of v In G. Note that, in the same graph, the cardinalities of
a maximum unweighted connected matching and of a maximum weighted connected
matching are not always the same. We exemplify in Figure 1. Therefore, we expect that these
problems have different computational treatments.

Theorem 1

The proof of Theorem 1[2] Is based on the
/ o - o : o - o \ fact that, In a graph G, If M Is a maximum
matching and G[M] Is disconnected, In which
C 1s connected component of G[M], then it is
possible to redefine the edges of M In order

to increment vertices of C In M, successively,
K Figure 1. Two maximum connected matchings ofagraph.j until G[M] has a single Component

We present an i1dea to do all this process and leave G[M] connected in linear time. Let M be a
maximum matching such that G|[M] Is disconnected and r a M-saturated vertex. Consider C,
to be the component of G[M] which contains r. We use two sets, Q; and @Q,,, to store M-
saturated and M-unsaturated vertices, respectively. Additionally, we employ a set C, to which
vertices of C,. or new vertices are added. A main loop can be executed until G|M] equals C.
Each iteration is divided into two other auxiliary loops and includes at least one vertex at C.
The first auxiliary loop, for each vertex v of Q, analyzes N (v), and properly adds to this set
each vertex of that neighborhood that has not yet entered the set. The second auxiliary loop,
for each vertex v of Q,,, If w € N(v) \ C exists, then w Is saturated by some edge, (w, u),
and we perform the edge exchange operation in M. Such operation removes (w,u) and adds
the edge (v, w) to M. In the end of this process, G[M] will be connected.

Connected Matchings

/ ~ remote
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