Network Science

Joao Meidanis

University of Campinas, Brazil

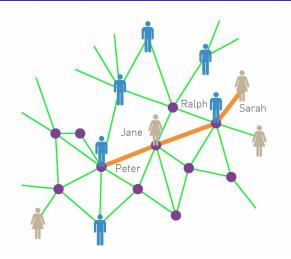
November 20, 2020

Summary

- 1 The 'Small World' Property
- Scale-free networks
- Oegree Correlations
- 4 Network Robustness
- Spreading Phenomena
- 6 References

The 'Small World' Property

Six Degrees of Separation



Source: L.-A. Barabási, *Network Science*, http://networksciencebook.com, accessed 2020-08-22

Brief Historical Account

- 1929 Hungarian writer F. Karinthy used the idea in some of his books.
- 1958 Mathematician M. Kochen and political scientist I. de Sola Pool wrote first mathematical analysis on the subject, published in 1978, but widely circulated since 1958.
- 1967 Social psychologist S. Milgram performed first experiment testing the idea. Found 5.2 mean.
- 1991 Brodaway play "Six degrees of separation" by John Guare popularized the idea.
- 1998 Physicists D. J. Watts and S. Strogatz *Nature* paper: how a few changes in regular graph make it small-world.
- 1999 Physicists H. Jeong, R. Albert and A. L. Barabási *Nature* paper: estimated 19 degrees for WWW.
- 2011 Facebook Data Team found 4.7 mean separation for their social network at the time.

Are Small Worlds Common?

Random Networks:

$$\langle d
angle \propto rac{\ln N}{\ln \langle k
angle}$$

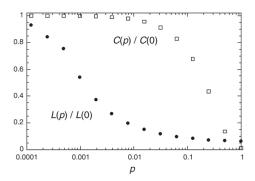
$$\langle d
angle \propto N^{1/\ell}$$

• Cycle powers $C_N^{k/2}$:

$$\langle d \rangle \propto \frac{N}{2k}$$

Watts-Strogatz (Nature 1998)

- Switch links at random in a sparse cycle power with probability p
- Rapid drop in $\langle d \rangle$ (= L(p)) as p increases



Source: D. J. Watts, S. Strogatz, Nature, 393, pp. 440-442 (1998)

Most real networks are small-world

Network	N	$\langle k \rangle$	$\langle d \rangle$	$\ln N / \ln \langle k \rangle$
Internet Routers	192,244	6.34	6.98	6.58
WWW Documents	325,729	4.60	11.27	8.31
Power Grid Stations	4,941	2.67	18.99	8.66
Mobile Phone Calls	36,595	2.51	11.72	11.42
Email Messages	57,194	1.81	5.88	18.40
Science Collaboration	23,133	8.08	5.35	4.81
Paper Citations	449,673	10.43	11.21	5.55
Actor co-staring	702,388	83.71	3.91	3.04
E. coli Metabolism	1,039	5.58	2.98	4.04
Protein Interaction	2,018	2.90	5.61	7.14

Source: L.-A. Barabási, *Network Science*, http://networksciencebook.com, accessed 2020-08-24

8 / 41

Scale-free networks

Is WWW a random network?

Both small-world

Random Network: two equivalent models

G(N, L) Erdös-Rényi G(N, p) Gilbert

Gilbert's model easier to work with

What do we know about random networks?

Random Networks

What do we know about G(N, p) random networks?

Average degree

$$\langle k \rangle = p(N-1)$$

Average number of edges

$$\langle L \rangle = \rho \frac{N(N-1)}{2}$$

- Degree distribution
 - Binomial form

$$p_k = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

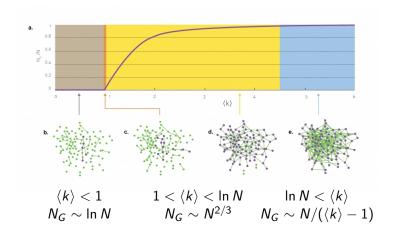
Poisson form

$$p_k \sim \mathrm{e}^{-\langle k \rangle} rac{\left\langle k
ight
angle^k}{k!}$$

• Connectivity as $\langle k \rangle$ varies

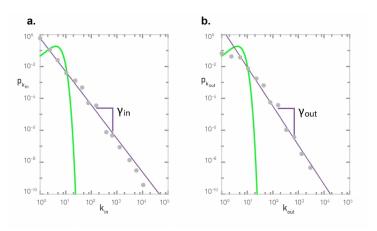
Connectivity of G(N, p)

Size of giant component (largest component) N_G as $\langle k \rangle$ varies



WWW not a random network

Degree distribution follows power law rather than Poisson (Binomial)



 $p_k = \text{probability of having degree } k$

Scale-free networks

• **Definition**: degree distribution follows a power law

$$p_k \sim k^{-\gamma}$$

- No scale: 1st moment exists, but 2nd moment diverges
- **Noticeable** even in finite setting. WWW:

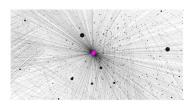
$$k_{in} = 4.60 \pm 1546$$

Most real networks are scale-free

Network	N	$\langle k \rangle$	$\gamma_{\it in}$	γ_{out}	γ
Internet Routers	192,244	6.34			3.42
WWW Documents	325,729	4.60	2.00	2.31	
Power Grid Stations	4,941	2.67			(*)
Mobile Phone Calls	36,595	2.51	4.69	5.01	
Email Messages	57,194	1.81	3.43	2.03	
Science Collaboration	23,133	8.08			3.35
Paper Citations	449,673	10.43	3.03	4.00	
Actor co-staring	702,388	83.71			2.12
E. coli Metabolism	1,039	5.58	2.43	2.90	
Protein Interaction	2,018	2.90			2.89

^(*) Exponential degree distribution. Not scale-free.

Scale-free implications



- Existence of **hubs**: nodes with very high degree
- Robustness against random failure
- Vulnerability to attacks
- Small world: fast spreading phenomena (news, disease, etc.)

Degree Correlations

Celebrity marriages

Degree correlations:

• Tendency to link nodes of similar degree

Source: L.-A. Barabási, Network Science, http://networksciencebook.com, acc. 2020-08-29

18 / 41

Types of network

Assortative:

favors links between nodes with similar degrees

Neutral:

no particular bias in links with respect to endpoint degrees

Disassortative:

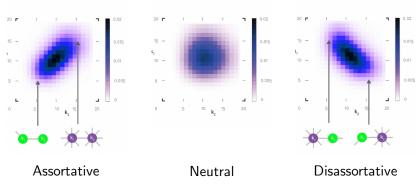
favors links between nodes with widely different degrees

How to measure

- degree correlation matrix (size k_{max}^2)
- degree correlation function (size k_{max})
- degree correlation coefficient (size 1)

Degree correlation matrix

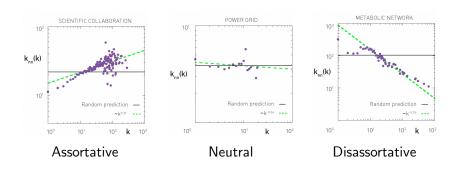
Definition: $e_{ij} = \text{probability of finding a node with degrees } i \text{ and } j$ at the two ends of a randomly selected link



Source: L.-A. Barabási, Network Science, http://networksciencebook.com, acc. 2020-09-10

Degree correlation function

Definition: $k_{nn}(k)$ = average degree of the neighbors of all degree-k nodes



Source: L.-A. Barabási, Network Science, http://networksciencebook.com, acc. 2020-09-11

November 20, 2020

Degree correlation coefficient

Definition:

$$r=\sum_{jk}\frac{jk(e_{jk}-q_jq_k)}{\sigma^2},$$

where:

$$\sigma^2 = \sum_k k^2 q_k - \left[\sum_k k q_k\right]^2 \text{ and } q_k = \frac{k p_k}{\langle k \rangle}.$$

We have:

$$-1 \le r \le +1$$

r > 0: assortative network

r = 0: neutral network

r < 0: disassortative network

Source: L.-A. Barabási, Network Science, http://networksciencebook.com, acc. 2020-10-14

Degree correlation in real networks

		0.00	
	Network	n	r
	Physics coauthorship (a)	52 909	0.363
Social networks	Biology coauthorship (a)	1 520 251	0.127
are assortative	Mathematics coauthorship (b)	253 339	0.120
ale assorialive	Film actor collaborations (c)	449 913	0.208
	Company directors (d)	7 673	0.276
	Internet (e)	10 697	-0.189
	World-Wide Web (f)	269 504	-0.065
	Protein interactions (g)	2 115	-0.156
	Neural network (h)	307	-0.163
	Marine food web (i)	134	-0.247
	Freshwater food web (j)	92	-0.276
	Random graph (u)		0
	Callaway et al. (v)		$\delta/(1+2\delta)$
	Barabási and Albert (w)		0

Source: L.-A. Barabási et al., slides for Chapter 7 of Network Science book, http://networksciencebook.com/slides-2017.zip, accessed on 2020-11-13

23 / 41

Network Robustness

Network Robustness

• How resilient is a real network to RANDOM FAILURES?

(i.e., removal of random nodes)

• How easy is it to break it with PLANNED ATTACKS?

(i.e., removal of hubs)

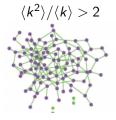
"break": disconnect the giant component

Conditions for the Existence of a Giant Component

- For random networks: $\langle k \rangle > 1$
- BUT, scale-free networks are not random!
- Molloy-Reed: condition for giant component in random networks that follow a given degree distribution

$$\langle k^2 \rangle / \langle k \rangle < 2$$

All components small



Giant component

Spreading Phenomena

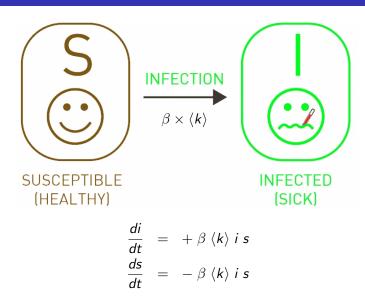
Examples of spreading phenomena

Not restricted to diseases

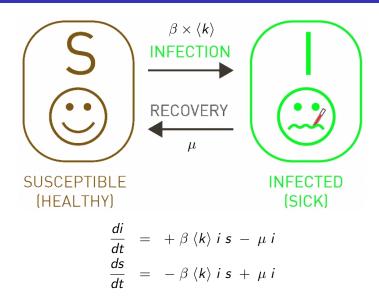
Phenomena	Agent	Network
Venereal Disease	Pathogens	Sexual Network
Rumor Spreading	Information, Memes	Communication Network
Innovation Diffusion	Ideas, Knowledge	Communication Network
Computer Viruses	Malwares	Internet
Mobile Phone Virus	Mobile Viruses	Social/Proximity Network
Bedbugs	Parasitic Insects	Hotel-Traveler Network
Malaria	Plasmodium	Mosquito-Human Network

Source: L.-A. Barabási, Network Science, http://networksciencebook.com, acc. 2020-11-02

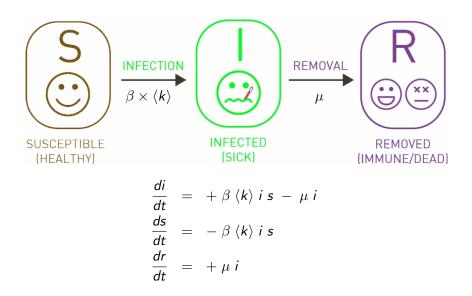
Classical epidemic modeling: SI model



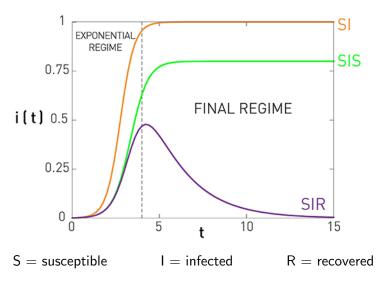
Classical epidemic modeling: SIS model



Classical epidemic modeling: SIR model



Classical epidemic modeling: Outcome Summary



Network epidemic modeling

Model	Continuum Equations	Epidemic Condition
SI	$\frac{di_k}{dt} = \beta[1 - i_k]k\theta_k$	$\beta > 0$
SIS	$\frac{di_k}{dt} = \beta[1 - i_k]k\theta_k - \mu i_k$	$rac{eta}{\mu} > rac{\langle k angle}{\langle k^2 angle}$
SIR	$\frac{di_k}{dt} = \beta[1 - i_k - r_k]\theta_k - \mu i_k$ $\frac{dr_k}{dt} = \mu i_k$	$rac{eta}{\mu} > rac{\langle k angle}{\langle k^2 angle - \langle k angle}$

How to halt an Epidemic?

Transmission-reducing interventions:

- Face masks, gloves, hand washing: airborne or contact-based pathogens
- Condoms: sexually transmitted pathogens

Contact-Reducing Interventions:

- Quarantine patients
- Close schools
- Limit access to frequently visited public spaces

Vaccinations:

- Permanently remove vaccinated nodes
- Reduce the spreading rate

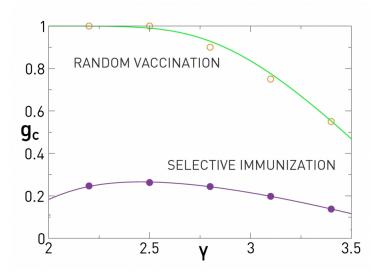
Selective Immunization

Target hubs. But how to find hubs?

Friendship paradox: the fact that on average the neighbors of a node have higher degree than the node itself

- Group 0: randomly chosen *p* fraction of population
- Select a random link from every node in Group 0
- Group 1: other side of links selected in previous step
- Immunize the Group 1 individuals

Selective Immunization



References

References I

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.

Four degrees of separation.

In Michael W. Macy and Wolfgang Nejdl, editors, *WebSci 2012: Proceedings of the 4th Annual ACM Web Science Conference*, pages 33–42, New York, NY, USA, Jun 2012. Association for Computing Machinery.

Albert-László Barabási and Márton Pósfai.

Network Science.

Cambridge University Press, 2016

Cambridge University Press, 2016.

References II

Ithiel de Sola Pool and Manfred Kochen.

Contacts and influence.

Social Networks, 1(1):5-51, 1978.

Paul Erdös and Alfred Rényi.

On random graphs i.

Publicationes Mathematicae Debrecen, 6:290, 1959.

Edgar Nelson Gilbert.

Random graphs.

Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

References III

Frigyes Karinthy.

Minden másképpen van (Ötvenkét vasárnap).

Athenaeum, Budapest, 1929.

English translation of chapter Chain-Links (acc. 2020-11-18): https://edisciplinas.usp.br/pluginfile.php/4205012/mod_

resource/content/1/Karinthy-Chain-Links_1929.pdf.

Stanley Milgram.

The small-world problem.

Psychology Today, 1(1):61-67, May 1967.

Jeffrey Travers and Stanley Milgram.

An experimental study of the small world problem.

Sociometry, 32(4):425-443, Dec 1969.

References IV

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393:440–442, Jun 1998.