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Preface

The Latin American Workshop on Cliques in Graphs (LAWCG) is meant to
foster interaction among the Latin American Graph Theory and Combina-
torics community, whose research interests include cliques, clique graphs,
the behavior of cliques and other topics in Graph Theory.

Twenty years ago, the first edition of LAWCG was held in Rio de
Janeiro, in honor of Jayme Szwarcfiter’s 60th birthday. Now, in 2022, it is
our greatest pleasure to celebrate the workshop’s 20th anniversary along
with Jayme’s 80th birthday.

We are grateful to Ana Shirley Ferreira da Silva (UFC, Brazil), Mucuy-
kak Guevara (UNAM, México), and Vinicius Fernandes dos Santos (UFMG,
Brazil) for accepting our invitation to come as invited speakers and share
their thoughts and experiences with our scientific community.

We sincerely thank all the authors and participants for their effective
participation in LAWCG ’22. We received 78 submissions by 176 authors
from 11 countries: Argentina, Brazil, Canada, France, India, Iran, Mex-
ico, Netherlands, Slovenia, Spain, and The United Kingdom. This book
contains the 68 abstracts presented in the workshop.

We hope that these days in Curitiba can be a source of inspiration and
increase the collaboration for the development of research in our commu-
nity.

May our cliques grow larger and larger!

Curitiba, Brazil, October 16th, 2022

André Luiz Pires Guedes
(General Chair)
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Technical Sessions

Monday - October 17

9:20 - 10:20

Session 1 - Room 1 Session 2 - Room 2
Networks Geometry

On the hardness of finding arc-disjoint branching flows in bm(k, lambda, s)-sufficient 
networks. On two-path geometries in digraphs
Cláudio Carvalho, Jonas Silva, Raul Lopes, Ana Karolinna Maia, Nicolas Nisse and 
Cláudia Sales

Marisa Gutierrez, Mitre Dourado, Fabio Protti and Silvia Tondato

Positive results for finding arc-disjoint branching flows on (k, λ, s)-sufficient networks From word-representable graphs to altered Tverberg-type theorems
Cláudio Carvalho, Jonas Costa, Raul Lopes, Ana Karolinna Maia, Nicolas Nisse and 
Cláudia Linhares Sales

Deborah Oliveros and Antonio Torres-Hernandez

Graph properties on routing problems with time intervals A New Heuristic for the Euclidean Steiner Tree Problem in n Dimensions
Thailsson Clementino, Rosiane de Freitas and Eduardo Uchoa Nelson Maculan and Renan Pinto

10:50 - 12:10

Session 3 - Room 1 Session 4 - Room 2
Labeling and Coloring Domination and Independence 

Acyclic Coloring of Digraph Products Dominação Romana em Classes de Snarks
Isnard Costa and Ana Silva Guilherme Willian Saraiva da Hora and Atilio Gomes Luiz
Contributions in scheduling theory and special graph colorings with Jayme Domination and Independent Domination Numbers of some Families of Snarks
Rosiane de Freitas A. A. Pereira and C. N. Campos
Multicolored Ramsey numbers for 4-cycle and stars k-independence in some Cartesian products
Lucas da Penha Soares and Emerson Luiz Do Monte Carmelo Márcia Cappelle, Erika Coelho, Otávio Mortosa and Julliano Nascimento
Two infinite families of Type 1 generalized Petersen graphs Weighted Connected Matchings
Sérgio Fusquino, Mauro Nigro and Diana Sasaki Guilherme C. M. Gomes, Bruno P. Masquio, Paulo E. D. Pinto, Vinicius F. dos Santos 

and Jayme L. Szwarcfiter

14:50 - 16:10

Session 5 - Room 1 Session 6 - Room 2
Labeling and Coloring Graph Classes

Equitable total coloring of Semiblowup and Kochol snark families total coloring K-comportamiento de gráficas cocordales
Isabel F. A. Gonçalves, Simone Dantas and Diana Sasaki Lesli Hernández-Sayago, Miguel Pizaña and Rafael Villarroel-Flores
Edge coloring of split graphs with even maximum degree Hardness of the f-Reversible Process in Directed Graphs
Cintia Izabel Cararo, Sheila Morais de Almeida, Cândida Nunes da Silva and 
Glasielly Demori Proença

Isac Costa, Carlos Vinicius Lima and Thiago Braga Marcilon

The (p,1)-total number of graphs with maximum degree three How to draw a K(n, 2) Kneser graph?
Mayara Omai, C. N. Campos and Atílio G. Luiz Luerbio Faria, Antonio Sousa, Jonas Carneiro and Mario Pabon
Estudo sobre (r + 1)-atribuição de papéis para prismas complementares, com r ≥ 3 Fullerene Waves
Diane Castonguay, Elisângela S. Dias, Fernanda N. Mesquita and Julliano R. 
Nascimento

João Pedro Costa and Diego Nicodemos

16:40 - 18:00

Session 7 - Room 1 Session 8 - Room 2
Labeling and Coloring Graph Operations

On Total Colouring Bipartite Graphs with at Most Three Bicliques On tessellations and graph operations: Adding pendant and false twin vertices
Gustavo Leardini Montanheiro, Leandro Zatesko and Marina Groshaus Alexandre De Abreu, Celina De Figueiredo, Franklin Marquezino and Daniel Posner

Local antimagic chromatic number of Bethe trees
Reducing the Time Complexity of Computing Square Roots with Girth at Least Six of 
a Graph

Francisca Andrea Macedo França, Andre Ebling Brondani and Lara Rodrigues 
Ventura

Cristopher Carcereri, Aleffer Rocha and Renato Carmo

On non-equitable color class configurations for small Type 1 cubic graphs On iterated clique graphs with exponential growth
Matheus Adauto, Celina Figueiredo and Diana Sasaki Miguel Pizaña and Ismael Robles
Locally irregular decompositions of a class of subcubic graphs Critical generators of K_5
Carla Lintzmayer, Guilherme Mota, Lucas Rocha and Maycon Sambinelli Gabriela Ravenna and Liliana Alcon



Tuesday - October 18

9:00 - 10:20

Session 9 - Room 1 Session 10 - Room 2
Graph Classes Applications

Containment among classes of interval graphs with interval count k Monkey Hash Map: a highly performant thread-safe map without locks
Lívia Medeiros, Fabiano Oliveira and Jayme Szwarcfiter Judismar Arpini Junior and Vinícius G. Pereira de Sá
On cycle-free-CPT posets Clique problems in 3D molecular prediction
Liliana Alcón, Noemí Amalia Gudiño and Marisa Gutierrez João Alfredo Holanda Bessa Neto, Clarice Santos, Rosiane de Freitas, Micael 

Oliveira, Jonathas Nunes and Kelson Mota
Chordal Thinness COVID-19 mortality prediction - Perceptron and Random Forest applications
Bernardo Amorim, Gabriel Coutinho and Vinicius dos Santos João Pedro Marcelino Terra, Luerbio Faria and Fabiano Oliveira
On two variants of split graphs Restricted Hamming-Huffman trees
Luciano Grippo and Verónica Moyano Min Lin, Fabiano Oliveira, Paulo Pinto, Moysés Sampaio Jr. and Jayme Szwarcfiter

10:50 - 11:50

Session 11 - Room 1 Session 12 - Room 2
Flow Graphs Geometry

A simple proof of the bijection between Minimal Feedback Arc Sets and Hamiltonian 
Paths in tournaments Spectral properties of threshold k-uniform hypergraphs
Rafael Schneider and Fábio Botler Lucas Portugal and Renata Del-Vecchio
Control flow graph, formal verification and constraint programming techniques On a semidefinite relaxation for the maximum k-colourable subgraph problem
Jesse Deveza, Lanier Santos, Rosiane de Freitas and Lucas Cordeiro Marcel K. de Carli Silva, Gabriel Coutinho, Rafael Grandsire and Thiago Oliveira
FPT algorithm for feedback vertex set in reducible flow hypergraphs Positive semidefiniteness of Aα(G) on some families of graphs with k cycles
Luerbio Faria, André L. P. Guedes and Lilian Markenzon Carla Oliveira, André Brondani and Victor Melquiades

Wednesday - October 19

9:00 - 10:20

Session 13 - Room 1 Session 14 - Room 2
Labeling and Coloring Computational Complexity

On total coloring of subcubic graphs Elecciones con Simetrías
Luerbio Faria, Mauro Nigro and Diana Sasaki Claudia De la Cruz and Miguel Pizaña
Neighbor distinguishing coloring for cacti graphs NP-Hardness of perfect rainbow polygons
Vinícius De Souza Carvalho, Maycon Sambinelli and Carla Negri Lintzmayer David Flores-Peñaloza and Andrés Fuentes-Hernández
Edge-Sum Distinguishing game Parameterized complexity of computing maximum minimal blocking and hitting sets
Deise L. de Oliveira, Danilo Artigas, Simone Dantas and Atílio G. Luiz Julio Araujo, Marin Bougeret, Victor Campos and Ignasi Sau

The (2,1)-total number of powers of paths and powers of cycles
Theoretical and empirical analysis of algorithms for the max-npv project scheduling 
problem

M. M. Omai, C. N. Campos and Atílio G. Luiz Isac M. Lacerda, Rosiane de F. Rodrigues, Eber A. Schmitz and Jayme L. Szwarcfiter

10:50 - 12:10

Session 15 - Room 1 Session 16 - Room 2
Games Graph Classes

Some variations of the Tower of Hanoi and their graph properties On the Helly Number of trees
Lia Martins, Meng Hsu, Raquel Folz and Rosiane De Freitas Moisés Carvalho, Simone Dantas, Mitre Dourado, Daniel Posner and Jayme 

Szwarcfiter
The Conflict-Free coloring game and cliques On the Biclique Graphs of Circular Arc Bigraphs
Paola Tatiana Huaynoca, Miguel Palma and Simone Dantas Fabricio Schiavon Kolberg, Marina Groshaus and André L. P. Guedes
Hardness of general position games Tree 3-spanners on prisms of graphs
Ullas Chandran S.V., Sandi Klavzar, Neethu P. K. and Rudini Sampaio Renzo Gomez, Flavio K. Miyazawa and Yoshiko Wakabayashi
Notes on graph variations of the NIM game Extendiendo Gráficas Cuadrado-complementarias
Raquel Folz, Meng Hsu, Lia Martins and Rosiane de Freitas Ariadna Juarez-Valencia and Miguel Pizaña
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Computational Complexity Labeling and Coloring

The Terminal Connection Problem on Rooted Directed Path Graphs is NP-complete O Número Cromático Total de Grafos Split 2-admissíveis
Alexsander Melo, Celina Figueiredo, Ana Silva and Uéverton Souza Diego Amaro Costa, Sulamita Klein and Fernanda Couto
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Erika Morais Martins Coelho, Hebert Coelho, Luerbio Faria, Mateus de Paula Ferreira 
and Sulamita Klein

Mariana Cruz, Celina Figueiredo, Diana Sasaki, Marcus Vinicius Tovar Costa and 
Diego Nicodemos

Hard instances for the maximum clique problem A New Bound for the Sum of Squares of Degrees in a Class 2 Graph
Rodrigo Nogueira, Victor Campos and Renato Carmo Thiago Cunha and Leandro Zatesko
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A gentle introduction to reconfiguration

Vinicius Fernandes dos Santos
DCC - Universidade Federal de Minas Gerais

e-mail: viniciussantos@dcc.ufmg.br

Chair: Leandro Zatesko

Transforming (combinatorial) objects into others is a very general task that
can be used to model natural questions. Tasks such as solving certain puz-
zles, sorting an array or exploring the solution space of a given problem,
could sound really different at first glance, but one can find similar ele-
ments: there is a set of allowed states, rules for navigating through them
and a goal. Combinatorial Reconfiguration is the study of problems having
those elements and has been attracting growing attention recently. Com-
mon questions in this setting are the connectivity of the reconfiguration
graph, the reachability of a target state from an initial state or, equivalently,
verifying whether two states belong to the same connected component of
the reconfiguration graph), and the shortest path in that graph. In this talk,
we will give an overview of this research field, presenting a selection of
results of different flavors of reconfiguration in graphs, such as reconfigu-
ration of (labeled) tokens, cliques, separators, among others.
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Connectivity Problems on Temporal Graphs

Ana Shirley Ferreira da Silva
Universidade Federal do Ceará

e-mail: anasilva@mat.ufc.br

Chair: Cláudia Linhares Sales

A temporal graph is a graph that changes in time, meaning that, at each
timestamp, only a subset of the edges is active. This structure models all
sorts of real life situations, from social networks to public transportation,
having been used also for contact tracing during the COVID pandemic.
Despite its broad applicability, and despite being around for more than two
decades, only recently this structure has received more attention from the
community. In this talk, we will discuss how to bring some connectivity
concepts to the temporal context, and we will learn about the state of the
art of complexity results of the related problems. Additionally, we will see
various possible adaptations of Menger’s Theorem, only a few of which
also hold on temporal graphs.
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A tour of kernels in digraphs and their generalizations

Mucuy-kak Guevara
Facultad de Ciencias - Universidad Nacional Autonoma de Mexico

e-mail: mucuy-kak.guevara@ciencias.unam.mx

Chair: Miguel Pizaña

A kernel N of D is an independent set of vertices such that for every w ∈
V (D) \N there exists an arc from w to N. A digraph is said to be kernel-
perfect if and only if any induced subdigraph has a kernel.

The concept of kernel was introduced by J. Von Neumann and has found
many applications, for instance in cooperative n-person games, Nim-type
games, in logic, etc. The main questions is: Which structural properties of
a digraph D imply that D has a kernel?

A classical result obtained by Sands, Sauer and Woodrow asserts that
the union of two transitive digraphs is a kernel-perfect digraph. Later it was
studied the union of a right-pretransitive and a left-pretransitive digraphs
and how it becomes a kernel-perfect digraph. In this talk, will be given
sufficient conditions for the union of two kernel-perfect digraphs to become
a kernel-perfect digraph.

Let F be a set of arcs of D a set S ⊆ V (D) is called a semikernel
of D modulo F if S is an independent set of vertices such that for every
z ∈ V (D) \ S for which there exists an Sz-arc of D \F , there also exists a
zS-arc in D. In this talk, the concept of semikernel modulo F is used to
obtain a new sufficient condition for the existence of kernels in digraph,
even in infinite digraphs. As a consequence is obtained a generalization of
the result of B. Sands, N. Sauer and R. Woodrow.

Also in this talk, will be presented how a generalization of the line di-
graph, the partial line digraph, preserves independent sets by directed path,
(k, l)-kernels (that means directed path are used) and some generalization
of (k, l)-kernels. And will be compared the number of kernels and general-
izations in D and in its partial line digraph, L(D). Also will be presented
a generalization of the Grundy function using neighborhood at distance l.
Furthermore, will be showed that we can say relation between the (k, l)-
kernels and the Grundy functions in D, as there exists relation between the
kernels and the Grundy function. And finally, will be reproduced the previ-
ous idea (and results) but now in edge colored digraphs and (k, l)-kernels
by monochromatic directed path.
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On the hardness of finding arc-disjoint branching flows in
(k,λ ,s)-sufficient networks

Cláudio Carvalho 1 Jonas Costa 1,†,∗ Raul Lopes 1

Ana Karolinna Maia 1 Nicolas Nisse 3 Cláudia Linhares Sales 1
1 MDCC, Universidade Federal do Ceará, Fortaleza-CE, Brazil

3 Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France

Keywords: network flows, arc-disjoint flows, branchings, branching flows

An s-branching is a digraph where every vertex has indegree exactly one,
except for s which has indegree zero. An s-branching flow in a network
N = (D,u), where u is the capacity function, is a flow that leaves from s
with value |V (D)|− 1 such that every other vertex of V (D) may consume
exactly one unit of flow. We say that N is (k,λ ,s)-sufficient if d−

D (X) ≥
k⌈|X |/λ⌉ for all X ⊆ V (D)− {s}. The (k,λ ,s)-sufficiency is a necessary
condition for the existence of k arc-disjoint branching flows in N , if u(a) =
λ for every arc a ∈ A(D). In [2] the authors asked if it was also a sufficient
condition for those networks since it generalises the characterization given
by Edmonds in [3] of digraphs with k arc-disjoint branchings. In [1] it was
shown that it is not a sufficient condition in general to the existence of such
flows. In this work, we go further in this matter and show that actually it
is NP-complete to decide whether a (k,λ ,s)-sufficient network admits k
arc-disjoint branching flows.

References
[1] Carvalho, C.; Costa, J.; Lopes, R.; Maia, A.; Nisse, N.; Sales, C., Characteriz-
ing Networks Admitting k Arc-disjoint Branching Flows, In Anais do V Encontro
de Teoria da Computação (pp. 57–60). SBC.
[2] Costa, J.; Linhares Sales, C.; Lopes, R.; Maia, A., Um estudo de redes com
fluxos ramificados arco-disjuntos, Matemática Contemporânea, (2019), Volume
46, 230–238.
[3] Edmonds, J., Edge-disjoint branchings, Combinatorial Algorithms, (1973).

†Supported by CAPES
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Positive results for finding arc-disjoint branching flows on
(k,λ ,s)-sufficient networks.

Cláudio Carvalho 1,2,∗ Jonas Costa 1,‡ Raul Lopes 1

Ana Karolinna Maia 1 Nicolas Nisse 4 Cláudia Linhares Sales 1
1 MDCC, Universidade Federal do Ceará, Fortaleza-CE, Brazil
2 Universidade Estadual Vale do Acaraú, Sobral-CE, Brazil

4 Université Côte d’Azur, Inria, CNRS, I3S, France

Keywords: network flows, arc-disjoint flows, branchings, branching flows

An s-branching is a digraph D where every vertex has indegree exactly one,
except for s which has indegree zero. An s-branching flow in a network
N = (D,u), where u is the capacity function, is a flow of value |V (D)|− 1
that leaves from s so that every vertex of V (D) \ {s} consumes exactly
one unit of flow. Based on a classical result by Edmonds [3], Costa et
al. [2] proposed a necessary condition for the existence of branching flows
on networks. They stated that if a network N = (D,u ≡ λ ) admits k
arc-disjoint branching flows, then every nonempty set X ⊆V (D)\ {s} has
indegree at least k⌈|X |/λ⌉. Carvalho et al. [1] showed that this is not a
sufficient condition, in general, to the existence of k arc-disjoint branching
flows. We call the digraphs that meet this condition, and so the networks
defined on them, as (k,λ ,s)-sufficient. In this work, we show that the
condition guarantees the existence of the desired flows in some particular
cases: when the underlying simple graph of D is a spindle; or, for general
digraphs, when λ = |V (D)|−2; or when λ or k is one.

References
[1] Carvalho, C.; Costa, J.; Lopes, R.; Maia, A.; Nisse, N.; Sales, C., Characteriz-
ing Networks Admitting k Arc-disjoint Branching Flows, In Anais do V Encontro
de Teoria da Computação (pp. 57–60). SBC.
[2] Costa, J.; Linhares Sales, C.; Lopes, R.; Maia, A., Um estudo de redes com
fluxos ramificados arco-disjuntos, Matemática Contemporânea, (2019), Volume
46, 230–238.
[3] Edmonds, J., Edge-disjoint branchings, Combinatorial Algorithms, (1973).

‡Supported by CAPES
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Graph properties on routing problems with time intervals

Thailsson Clementino 1,∗, Rosiane de Freitas 1, Eduardo Uchoa2
1 Instituto de Computação - UFAM, Brazil

2 Departamento de Engenharia de Produção - UFF, Brazil

Keywords: BCP, dynamic routing, integer programming, time intervals.

In this work, we deal with vehicle routing problems (Toth, P. and Vigo,
D. Vehicle routing: problems, methods, and applications, 2014) with two
different kinds of time constraints. Given a directed graph G = (V,A),
where the set of vertices V is composed by the vertex 0, which represents
the depot, and a set of vertices N = {1, ..., |N|}, which represents the clients
that will be visited. A is the set of directed edges (or arcs) connecting each
pair (i, j) ∈V ×V , where i ̸= j. There is a travel cost ci j and a travel time
ti j > 0 associated with each edge. The travel time ti j includes the service
time at vertex i. A set of available vehicles is denoted by K = {1, ..., |K|}.
The vehicles are homogeneous and have the capacity Q. For each vertex
i ∈ V is associated with a demand qi > 0. Routes must be created and
assigned to each vehicle in such a way that the vehicle respects capacity
constraints. Also, we are interested in adding two-time constraints: the first
one is a traditional time window [ei, li] associated with each vertex i ∈ V ,
where ei and li represent respectively the first and last moments to visit
the client or vertex i; and, the second one is a release date ri associated
with the package to be delivered at client i ∈ N, representing the time
this package is available to leave the depot. The objective is to minimize
the total cost of routes such that these routes comply with capacity and
time intervals constraints. We will discuss some results obtained with
the proposed formulation in a Branch-Cut-and-Price method, exploring
properties in graphs.
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On two-path geometries in digraphs

Mitre C. Dourado 1 Marisa Gutierrez 2,∗

Fábio Protti 3 Silvia B. Tondato 2
1 Instituto de Computação, Universidade Federal do Rio de Janeiro,

Brazil
2 CMaLP, Universidad Nacional de La Plata, Argentina

3 Instituto de Computação, Universidade Federal Fluminense,
Niteroi, Brazil

Keywords: convex geometry, digraphs

Let G be a simple finite graph, with vertex set V (G) and C a family of
subsets of V (G). The pair (G,C ) is a graph convexity when the /0 and
V (G) are in C and C is closed over intersection.The subsets belonging
to C are called convex sets . Given a set S ⊆ V (G), the smallest convex
set containing S is called the convex hull of S. An element x ∈ S, where
S ⊆V (G) is a convex set, is called an extreme vertex of S if S \ {x} is also
convex. A graph equipped with a convexity space is a convex geometry if
it satisfies the so-called Minkowski-Krein-Milman property: Every convex
set is the convex hull of its extreme vertices. In the last few decades, graph
convexity has been studied in many contexts. In particular, some studies
are devoted to determine if a graph equipped with a convexity space is
a convex geometry. Chordal, Ptolemaic, strongly chordal, interval, and
weakly polarizable graphs have been characterized as convex geometries
with respect to the monophonic, geodetic, strong, toll, and m3 convexities,
respectively.

In this work we study geometries in digraphs. As a first step we study
the geometry that corresponds to directed paths of two edges, called two-
path geometry. It is clear that directed cycles are not two-path geometries,
as a consequence no digraph with induced directed cycles will be a two-
path geometry. We prove that a directed path P : x −→ y −→ z −→ t and
P with a long chord are not two-path geometries and these two forbidden
digraphs characterize the two-path geometries in some classes of digraphs.
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From word-representable graphs to
altered Tverberg-type theorems

Débora Oliveros 1 Antonio Torres 2
1 Instituto de Matemáticas

2 Universidad Nacional Autónoma de México.

Keywords: Tverberg Theorem, k-word-representable graphs, Nerve Com-
plexes, Erdős-Szekeres Theorems.

Given a finite collection of points S ⊂ Rd and an m-partition into m color
classes P = S1, . . . ,Sm of S, the nerve of the partition, N (P) is the sim-
plicial complex with vertex set [m] := {1,2, . . . ,m} whose faces are I ⊂ [m]
such that ∩i∈I(conv(Si)) ̸= /0, where conv(Si) is the convex hull of the ele-
ments in the color class i.

Tverberg’s theorem, one of the most celebrated and beautiful theorems
in discrete geometry, (H. Tverberg (1966)). May be thought as a Ramsey-
type theorem, where one studies how every sufficiently large system (set
of points) must contain a large well-organized sub-system. “Sufficiently
large" means that for every set of points S with at least (d + 1)(m− 1)+ 1
points, there always exists a partition P into m color classes such that
N (P), is a simplex.

De Loera, J.,De Loera, J. A., Hogan, T. A., Oliveros, D., and Yang,
D. (2021) show that Tverberg’s theorem can be seen as a special case of
a more general situation, proving that some new Ramsey-Tverberg–type
theorem may ocurre with other nerves different than the simplex. A graph
G = (V,E) is word-representable if there exists a word W over the alphabet
V such that letters x and y alternate in W if and only if {x,y} ∈ E for each
x ̸= y. In particular, if the length of the alternation is k, the word is called k-
representable. Not all graphs are word-representable, but we have observed
that with a slight generalization and allowing the word W to contain a k-
alternating subwords, every graph is “general k-word-representable" for
some k. In this talk we observe an engaging connection between general k-
word-representable graphs and Ramsey-Tverberg–type results, where nerve
structures are shown to arise once we have sufficiently many points.
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A New Heuristic for the Euclidean Steiner Tree Problem
in n Dimensions

Renan Vicente Pinto 1,∗ Nelson Maculan 2
1 Federal Rural University of Rio de Janeiro

2 Federal University of Rio de Janeiro

Keywords: Euclidean Steiner Tree Problem, Combinatorial Optimization,
Heuristic, Second-Order Cone Programming

Given p points in Rn, called terminal points, the Euclidean Steiner Tree
Problem (ESTP) consists of finding the shortest tree connecting them, using
or not extra points, called Steiner points. This is a well known NP-hard
combinatorial optimization problem. Instances with thousands of points
have been solved for n = 2. However, methods specialized for the ESTP
in R2 cannot be applied to problems in higher dimensions. Enumeration
schemes have been proposed in the literature. Unfortunately, the number
of Steiner trees having p terminal points grows extremely fast with p, so
the enumeration of all trees is only possible for very small values of p. For
n ≥ 3, even small instances with tens of points cannot be solved with exact
algorithms in reasonable time. In this work, we present two heuristics for
the ESTP. These heuristics differ from most existent ones in the literature in
the fact that they do not rely on the minimum spanning tree of the terminal
points. Instead, they start with a single extra point connected to all terminal
points and new extra points are introduced iteratively according to angle
proper- ties for two consecutive edges. The heuristics return the optimal
solution in most of the small test instances. For large instances, where
the optimum is not known, the heuristics return relatively good solutions,
according to their Steiner ratio.
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Acyclic Coloring of Digraph Products†

Isnard Lopes Costa 1,2 Ana Silva 1,2
2 Departamento de Matemática - Universidade Federal do Ceará

Fortaleza, Brazil

Keywords: acyclic coloring, acyclic chromatic number, digraph products.

Given a digraph G, an acyclic coloring of G is a partition of V (G) into
subsets, each of which induce an acyclic subdigraph of G; and the acyclic
chromatic number of G is the smallest integer χa(G) such that G admits
an acyclic coloring [2]. This is a generalization of the classic chromatic
number of graphs. In this work, given digraphs G and H, we investigate the
acyclic chromatic number of the cartesian (G□H), direct (G×H), strong
(G ⊠ H), and lexicographic (G[H]) products of G and H, giving gener-
alizations of some classic results on the chromatic number of products.
More specifically, we prove that the following results, whose analogous
counterpart are known to hold for the chromatic number of products of
graphs, still hold for the acyclic chromatic number of products of digraphs:
χa(G□H) = max{χa(G),χa(H)}; χa(G × H) ≤ min{χa(G),χa(H)}; and

χa(G[H]) = χa(G[
↔
Kk]), where k = χa(H) and

↔
Kk denotes the complete

digraph on k vertices. In addition, we investigate the products of directed

cycles, giving exact values for χa(
→
Cn ×

→
Cm) and χa(

→
Cn⊠

→
Cm) for every

n,m, and for χa(
→
Cn[H]) for every positive integer n. For more details, we

refer to [1].
References
[1] Costa, I. L. and Silva, A. S. F., Acyclic Coloring of Products of Digraphs
and of Digraphs with Bounded Treewidth, arXiv (10.48550/ARXIV.2204.14212),
(2022).
[2] Neumann-Lara, V., The dichromatic number of a digraph, J. of Combinatorial
Theory B, (1982), Volume 33, 265–270.

†Partially supported by CNPq and CAPES, Brazil.
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Contributions in scheduling theory and distance graph
colorings with Jayme

Rosiane de Freitas 1,∗,
1 Institute of Computing - UFAM, BRAZIL

Keywords: algorithms, distance graph coloring, Jayme Szwarcfiter, job-
machine constraints, project scheduling, T-coloring, UET scheduling.

In commemoration of the eightieth birthday celebration of the Brazilian
researcher Jayme Szwarcfiter, a reference in graph theory, algorithms, com-
putational complexity, and combinatorics in general, this work summarizes
the joint contributions of this author with Jayme, also involving other re-
searchers, in scheduling theory, especially involving UET (Unit Execution
Time) scheduling in identical parallel machines (deFreitas et. al., 2011)
(Dourado et. al., 2010) (Rodrigues, 2009), scheduling on parallel machines
considering job-machine dependency constraints (deFreitas et. al., 2014)
(deFreitas et. al., 2012) (Dourado et. al., 2010), project scheduling involv-
ing directed graphs (Mendes et. al., 2021) (Mendeset. al.,2020), and also,
contributions in distance-constrained vertex coloring problems (deFreitas
et. al., 2021) (Dias et. al., 2021)(Dias et. al., 2020) (Dias et. al., 2019).
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Multicolored Ramsey numbers for 4-cycle and stars

Lucas da Penha Soares 1,∗ Emerson Luiz do Monte Carmelo 1
1 Universidade Estadual de Maringá

Keywords: generalized Ramsey number, 4-cycle, stars, upper bound.

Let Kr be a complete graph on r vertices. Given graphs G1, . . . ,Gk, the gen-
eralized Ramsey number r(G1, . . . ,Gk) denotes the smallest positive integer
r such that any k-coloring of the edges of Kr contains a monochromatic
copy of Gi in color i for some i, 1≤ i ≤ k.

Let us focus on the classical numbers r(C4,K1,n). In 1975, Parsons
proved the upper bound r(C4,K1,n)≤ n+⌈

√
n⌉+1 and was able to evaluate

the exact classes r(C4,K1,q2) = q2+ q+ 1 and r(C4,K1,q2+1) = q2+ q+ 2
for every prime power q by using the Erdős-Rényi graph ERq, the polarity
graph arising from the projective plane of order q.

It is worth mentioning that exact values of Ramsey numbers are very
often highly non-trivial to establish. Indeed, a few exact classes have been
evaluated by Parsons (1975-76), Monte Carmelo (2008), Wu, Su and Zhang
(2015) and Zhang, Chen and Edwin (2017).

In 2019, Zhang, Chen and Cheng investigated the following generaliza-
tion

rk(n) = r(C4, . . . ,C4︸ ︷︷ ︸
k times

,K1,n).

They proved a general upper bound on rk(n) and determined the exact class
on r2(q2−q) for a prime power q by using difference sets.

In this talk, we obtain upper bounds on rk(n) on the basis of density
arguments on certain related matrices. Our results improve the known
general upper bound for certain instances.
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Two infinite families of Type 1
generalized Petersen graphs

Sérgio Fusquino 1∗ Mauro Nigro 1 Diana Sasaki 1
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Keywords: total coloring, generalized petersen graphs, cubic graphs

The Total Coloring Conjecture states that the total chromatic number of a
graph G is at most ∆(G)+ 2, where ∆(G) is the maximum degree of G.
Clearly, the total chromatic number is at least ∆(G)+ 1. This conjecture
has been proved for cubic graphs, so the total chromatic number of a cubic
graph is either 4 (called Type 1) or 5 (called Type 2). It is NP-hard to decide
whether a cubic graph is Type 1, even restricted to bipartite cubic graphs.

In this work, we investigate the total coloring of a well-known class
of cubic graphs introduced by Watkins in 1969, called generalized Pe-
tersen graphs. A generalized Petersen graph G(n,k) is a cubic graph with
n ≥ 3, 1≤ k ≤ n− 1, which has V (G(n,k)) = {u0, ...,un−1,v0, ...,vn−1} and
E(G(n,k)) = {uiui+1,uivi,vivi+k : 0≤ i ≤ n− 1}, indexes taken modulo n.

The girth of a graph is the size of the smallest cycle contained in it.
Only two generalized Petersen graphs are known to be Type 2 and they
have small girth. Besides, it is known that for 2≤ k ≤ n

2 , graph G(n,k) has
girth at least 5 whenever n /∈ {2k,3k,4k} (S. Dantas, C. de Figueiredo, G.
Mazzuoccolo, M. Preissmann, V. dos Santos, and D. Sasaki, On the total
coloring of generalized Petersen graphs, Discrete Mathematics, 339 (2016),
pp. 1471–1475). So one could hope to find an answer to the following
question among this family.

Question 1 — Brinkmann et al., 2015. Does there exist a Type 2 cubic
graph with girth at least 5?

We prove that all members of two infinite families of generalized Pe-
tersen graphs are Type 1, by presenting total colorings for them using 4
colors.

Theorem 1 All generalized Petersen graphs G(3 j,k) and G(5 j,5q+2),
for q ≥ 0, j ≥ 2q+ 1 and k ̸≡ 0 mod 3, are Type 1.
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Dominação Romana em Classes de Snarks†

Guilherme Willian Saraiva da Hora1,∗ Atílio Gomes Luiz1
1 Universidade Federal do Ceará, Quixadá, Brasil

Palavras-chave: dominação em grafos, dominação romana, grafos snarks

Dado um grafo G = (V (G),E(G)), a função f : V (G) → {0,1,2} é uma
Função de Dominação Romana (FDR) de G se todo vértice v ∈V (G) com
f (v) = 0 é adjacente a pelo menos um vértice u com f (u) = 2. O peso de
f , denotado por ω( f ), é definido como ω( f ) =

∑
v∈V (G) f (v). O número

de dominação romana de G é o menor valor ω( f ) dentre todas as FDRs f
de G e é denotado por γR(G). Este problema foi proposto por Cockayne et
al. (Cockayne, Dreyer, Hedetniemi, Hedetniemi, 2004), tendo como moti-
vação um problema de estratégia militar. Dreyer provou que o problema
de determinar se um grafo G possui γR(G) ≤ k para um inteiro positivo
k ≤ |V (G)| é NP-Completo. Dada a complexidade do problema, diversos
trabalhos na literatura apresentam limitantes para γR(G) ou determinam o
valor de γR(G) para classes de grafos.

A classe de grafos cúbicos é uma classe de interesse em Teoria dos
Grafos pois diversos problemas em grafos são NP-completos para esta
classe. Uma subclasse de grafos cúbicos relevante é a dos grafos snarks.
Um snark é um grafo cúbico que não contém aresta de corte e que não
admite uma 3-coloração própria de arestas. O parâmetro γR(G) foi deter-
minado para a família dos grafos snarks-flor (Maksimovic, Kratica, Savic,
Bogdanovic, 2018), porém permanece não determinado para outras famílias
de snarks. Neste trabalho, apresentamos limitantes superior e inferior para
γR(G) dos Snarks de Loupekine, apresentamos um limitante superior para
γR(G) dos Snarks de Goldberg e determinamos o valor exato de γR(G) dos
Snarks de Blanuša generalizados.

†Este trabalho foi apoiado pelo CNPq e PIBIC-UFC.
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Domination and Independent Domination Numbers of
some Families of Snarks†

A. A. Pereira 1,∗ C. N. Campos 1
1 Institute of Computing - University of Campinas

Keywords: Domination number, Independent domination number, General-
ized Blanuša Snarks, Loupekine Snarks.

Let G = (V,E) be a simple, connected and undirected graph with |V | = n.
A set S ⊆V is a dominating set of G if for every v ∈V , either v ∈ S or v is
adjacent to some vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set of G. An independent dominating set of
G is both dominating and independent. The minimum cardinality of an
independent dominating set of G is its independent domination number
i(G). Determining γ(G) and i(G) are NP-hard problems. These problems
remain NP-hard even when restricted to cubic graphs.

In 1996, Reed conjectured that every cubic graph has γ(G) ≤
⌈ n
3
⌉
,

which was later proved to be false, even for 2-connected cubic graphs. Nev-
ertheless, finding families of cubic graphs that verify or improve Reed’s
Conjecture is a hard and interesting problem. It is also challenging to
determine the relation between γ(G) and i(G) since deciding whether
γ(G) = i(G) is NP-complete. Even for cubic graphs, the difference
i(G)− γ(G) may be unbounded. In this work, we approach these two
problems for some classes of snarks — connected bridgeless cubic graphs
that are not 3-edge-colourable. More specifically, we show that for the
two families Bk, k ∈ {1,2}, of Generalized Blanuša Snarks, graph Bk

i ∈ Bk,
which has n = 8i+ 10 and i ≥ 1, has γ(Bk

i ) = i(Bk
i ) = 2i+4 when k = 1

and i ≥ 2 is odd, and γ(Bk
i ) = i(Bk

i ) = 2i+3 otherwise. Also, we establish
lower and upper bounds for γ(G) and i(G) when G belongs to two families
of Loupekine Snarks, known as LP0-snarks and LP1-snarks.

†Supported by CNPq 134580/2018-4.
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k-independence in some Cartesian products

Márcia R. Cappelle1 Erika M. M. Coelho1

Otávio S. Mortosa1 Julliano R. Nascimento1,∗
1Instituto de Informática, UFG, Goiânia, Brazil

Keywords: Cartesian product, k-independent sets, complexity

For a positive integer k, a subset S of vertices in a graph G = (V,E) is
k-independent if the maximum degree of the subgraph induced by the ver-
tices of S is less or equal to k− 1. The k-independence number α(G) is the
maximum cardinality of a k-independent set of G. Clearly, for k = 1, the 1-
independent sets are the classical independent sets. For more details on the
k-independence, we refer the reader to the survey (Chellali, Favaron, Hans-
berg, and Volkmann, k-domination and k-independence in graphs: A survey.
Graphs Comb., 28(1) (2012), 1-55). Given a graph G and integers k and
ℓ, the k-INDEPENDENT SET problem consists in deciding whether G has a
k-independent set with cardinality at least ℓ. This problem is known to be
NP-complete on arbitrary graphs (Jacobson and Peters, Complexity ques-
tions for n-domination and related parameters, Congr. Numer, 68 (1989),
7-22). Mao et al. (Mao, Cheng, Wang, and Guo, The k-independence
number of graph products, The Art of Discrete Appl. Math., 1(1) (2018),
P1-01) presented bounds on k-independence in graph products, including
Cartesian products.

We consider the Cartesian product of two paths, known as grid graphs,
and the Cartesian product of an arbitrary graph G and the 2-path, known as
prism graphs. We present results on k-independence on grids and we prove
that k-INDEPENDENT SET remains NP-complete even when restricted to
prisms, for k = 1,2.
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Weighted Connected Matchings

Guilherme C. M. Gomes 1 Bruno P. Masquio 2,∗

Paulo E. D. Pinto2 Vinicius F. dos Santos1

Jayme L. Szwarcfiter2,3
1 Universidade Federal de Minas Gerais (UFMG)

2 Universidade do Estado do Rio de Janeiro (UERJ)
3 Universidade Federal do Rio de Janeiro (UFRJ)

Keywords: Matchings, Algorithms, Complexity, Induced Subgraphs

Graph matching problems are well-studied computational problems with
applications in many areas. A matching M is a set of pairwise non-adjacent
edges of a graph, and is denoted as a P-matching if the subgraph induced by
the endpoints of the edges of M satisfies the property P. Some properties P
studied over the years include that the graph is 1-regular, acyclic, connected
or disconnected. For most of these properties P, finding a P-matching with
maximum cardinality is a knowingly NP-hard problem. One exception
is connected matchings, whose property P is that the graph is connected.
Matching problems are also studied for edge weighted graphs, having appli-
cations like the ASSIGNMENT problem. Motivated by these facts, in addi-
tion to recent researches in weighted versions of P-matchings, we study the
problem MAXIMUM WEIGHT CONNECTED MATCHING, where we want
to find a connected matching whose sum of the edge weights is maximum.
We prove that MAXIMUM WEIGHT CONNECTED MATCHING is NP-hard
even for bounded diameter bipartite graphs, starlike graphs, planar bipar-
tite, and subcubic planar graphs, while solvable in linear time for trees and
graphs having degree at most two. For graphs having no negative edge
weights, the problem turns to be polynomially solvable for chordal graphs,
while remains NP-hard for most of the cases where weights can be nega-
tive. Our final contributions are on parameterized complexity, presenting a
single exponential time algorithm when parameterized by treewidth. Con-
cerning kernelization, we show that the decision problem of MAXIMUM

WEIGHT CONNECTED MATCHING does not admit a polynomial kernel
when parameterized by vertex cover under standard complexity-theoretical
hypotheses.
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Equitable total coloring of Semiblowup and Kochol snark
families total coloring†

Isabel F. A. Gonçalves1 Simone Dantas1 Diana Sasaki2,∗
1 Fluminense Federal University, Brazil.

2 University of the State of Rio de Janeiro, Brazil.

Keywords: equitable total coloring, total coloring, SemiBlowup snarks,
superposition.

The well known Total Coloring Conjecture (TCC) states that the total chro-
matic number of a graph G is at least ∆ + 1 (graphs called Type 1) and at
most ∆ +2 (graphs called Type 2), where ∆ is the maximum degree of G.
The TCC has been settled for some specific graph families, but it remains
open for several graph classes for more than fifty years. Similarly, the
Equitable Total Coloring Conjecture (ETCC) states that the equitable total
chromatic number of a graph is at most ∆ +2. The ETCC was proved for
cubic graphs, and this implies that, if a cubic graph is Type 2, both the total
chromatic number and the equitable total chromatic number are equal to 5;
if a cubic graph is Type 1, the equitable total chromatic number can be ei-
ther 4 or 5. Dantas, De Figueiredo, Mazzuoccolo, Preissmann, dos Santos,
and Sasaki (2016) proved that it is NP-complete to decide whether the equi-
table total chromatic number is equal to 4 for a bipartite cubic graph. About
the equitable total coloring of cubic graphs with girth at least 5, Dantas et
al. (2016) asked whether there exists a Type 1 cubic graph with girth at
least 5 and equitable total chromatic number 5. In 1996, Kochol proposed
the superposition construction which provides infinite families of large
girth snarks, and, in 2016, Hägglund defined two other infinite families of
snarks: the Blowup and the SemiBlowup families. Gonçalves, Dantas and
Sasaki (2021) proved that all Blowup snarks have equitable total chromatic
number 4. In this work, we contribute to Dantas et al. (2016) question, by
providing negative evidence. We present equitable 4-total colorings for all
members of the SemiBlowup and 4-total colorings for all members of two
infinite families obtained by the Kochol superposition.

†This work was partially supported by CNPq, CAPES and FAPERJ.
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Edge coloring of split graphs with even maximum degree†

Cintia Izabel Cararo 1,∗ Sheila Morais de Almeida 1

Cândida Nunes da Silva 2 Glasielly Demori Proença 3
1 Federal University of Technology - Paraná, PR, Brazil

2 Federal University of São Carlos, SP, Brazil
3 Federal University of Mato Grosso do Sul, MS, Brazil

Keywords: chromatic index, edge coloring, split graphs

A proper edge coloring of a graph G is an assignment of colors to the edges
of G such that adjacent edges have distinct colors. The minimum number
k of colors needed in a proper edge coloring of G is called the chromatic
index of G, denoted χ ′(G). Since every pair of adjacent edges must have
distinct colors, χ ′(G) ≥ ∆(G), where ∆(G) is the maximum degree of G.
In 1964, Vizing established that χ ′(G) ≤ ∆(G)+ 1 for any simple graph
G. Graphs with χ ′(G) = ∆(G) are said to be Class 1, while graphs with
χ ′(G) = ∆(G)+ 1 are said to be Class 2. To decide if a given graph is
Class 1 is an NP-complete problem, as shown by Holyer in 1981.

A graph G = (V (G),E(G)) is a split graph if V (G) can be partitioned
into a clique Q and a stable set S. In 1995, Chen, Fu and Ko showed that
every split graph with odd maximum degree is Class 1. Their proof is
constructive, in the sense that they developed an algorithm that colors any
split graph G with odd maximum degree with ∆(G) colors. For split graphs
with even maximum degree determining the chromatic index is an open
problem. In 2012, Almeida showed that the algorithm of Chen, Fu and Ko
which obtains an edge coloring with ∆(G) colors can also be used when
∆(G) is even given that G satisfies certain properties. One such property is
when G has a vertex u ∈ S such that

⌈
|Q|
2

⌉
≤ d(u) ≤ ∆(G)

2 . We generalize
this condition showing that if G is a split graph, ∆(G) is even, and there is
a subset S ′ ⊆ S such that

⌈
|Q|
2

⌉
≤ |N(S ′)|≤ ∆(G)

2 , then G is Class 1.

†Partially supported by UTFPR, CAPES, and CNPq (428941/2016-8, 420079/2021-1).
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The (p,1)-total number of graphs
with maximum degree three†

M. M. Omai 1,∗ C. N. Campos 1 A. G. Luiz 2
1 University of Campinas, Brazil

2 Federal University of Ceará, Brazil

Keywords: Graph labelling, (p,1)-total labelling, Snarks, Subcubic graphs.

For G = (V (G),E(G)) a simple graph, a k-(p,1)-total labelling of G is a
function π : V (G)∪E(G)→ {0, . . . ,k} which satisfies the following prop-
erties: |π(uv)−π(u)|≥ p and |π(uv)−π(v)|≥ p for uv ∈ E(G); π(uv) ̸=
π(vw) for uv,vw ∈ E(G); and π(u) ̸= π(v) for uv ∈ E(G). The least integer
k for which G admits a k-(p,1)-total labelling is denoted λ t

p(G) and called
(p,1)-total number. This labelling, proposed by Havet and Yu (2002), is a
generalization of the well-known L(2,1)-labellings.

In their seminal work, Havet and Yu (2002) conjectured that λ t
p(G)≤

min{∆(G)+2p− 1,2∆(G)+ p− 1} for any graph G. They also conjectured
that every connected graph G ̸∼= K4 with ∆(G) ≤ 3 has λ t

2(G) ≤ 5. Since
the latter conjecture has been verified for G having ∆(G) ∈ {1,2}, we focus
on the case ∆(G) = 3. More specifically, we prove that λ t

2(G) = 5 and
λ t

p(G) = p+4, p > 2, for Goldberg Snarks, Generalized Blanuša Snarks
and LP-Snarks. Moreover, for G with ∆(G) = 3 and without adjacent
vertices of maximum degree, we show that λ t

2(G)≤ 5 and prove that this
bound is tight. For such graphs, we also prove that λ t

p(G) = p+3, p > 2,
when every pair of maximum degree vertices is at distance at least four;
otherwise, λ t

p(G)≤ p+4.

†Partially supported by CNPq (425340/2016-3) and CAPES.
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Estudo sobre (r+1)-atribuição de papéis para prismas
complementares, com r ≥ 3

Diane Castonguay 1,∗ Elisângela Silva Dias 1

Fernanda Neiva Mesquita] 1 Julliano Rosa Nascimento 1
1 INF, Universidade Federal de Goiás, GO, Brasil

Keywords: atribuição de papéis, prisma complementar, rede social.

O uso das redes sociais, como Facebook, Twitter e Instagram, foi potencial-
izado pelo distanciamento social e a necessidade de se manter conectados
durante a pandemia, devido ao surgimento do novo coronavírus (COVID-
19). Com isso, as mesmas tornaram-se fonte de um volume gigantesco
de dados, tornando indispensável a modelagem das redes sociais a fim de
extrair informações. Deste modo, os grafos constituem uma ferramenta
poderosa em que os vértices representam indivíduos e as arestas relações
entre eles. Com base em modelos de grafos para redes sociais, Everett e
Borgatti (1991) formalizaram a atribuição de papéis sob o nome de role
coloring. Assim, uma r-atribuição de papéis de um grafo simples G é
uma atribuição de r papéis distintos aos vértices de G, tal que, dois vér-
tices com o mesmo papel têm o mesmo conjunto de papéis nos vértices
relacionados. Além disso, uma r-atribuição de papéis específica define um
grafo de papéis, no qual os vértices são os r papéis distintos, e existe uma
aresta entre dois papéis sempre que há dois vértices relacionados no grafo
G que correspondem a esses papéis. Consideramos a classe dos prismas
complementares, que são os grafos formados a partir da união disjunta do
grafo com seu respectivo complemento, adicionando as arestas de um em-
parelhamento perfeito entre seus vértices correspondentes. Castonguay et
al. (2019) caracterizam que qualquer prisma complementar de um grafo,
que não seja o prisma complementar do caminho com três vértices, tem
uma 2-atribuição de papéis. Neste trabalho, consideramos, r ≥ 3, o grafo
de papéis K ′

1,r que é o grafo bipartido K1,r com laço no vértice de grau r.
Concluímos que o problema de decidir se um prisma complementar tem
uma (r+ 1)-atribuição de papéis, quando o grafo de papéis é K ′

1,r, é NP-
completo. Conjecturamos que, para r ≥ 3, o problema de decidir se um
prisma complementar tem uma (r+1)-atribuição de papéis, é NP-completo.



K-comportamiento de gráficas cocordales . . . . . . . . . 43

Hardness of the f -Reversible Process in Directed Graphs†

44

How to draw a K(n,2) Kneser graph?† . . . . . . . . . . . 45

Fullerene Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Session 6
Graph Classes

Chair: Sulamita Klein



LAWCG’ 22 43

K-comportamiento de gráficas cocordales

Lesli Hernández-Sayago1,∗ Miguel Pizaña2

Rafael Villarroel-Flores3
1,2 Universidad Autónoma Metropolitana

3 Universidad Autónoma del Estado de Hidalgo

Keywords: Gráficas de clanes, K-comportamiento, gráficas cordales, com-
plemento de gráficas cordales

La gráfica de clanes K(G) de una gráfica G es la gráfica de intersec-
ción de sus clanes (subgráficas completas maximales). Definimos Kn(G)
por K0(G) = G y Kn(G) = K(Kn−1(G)). Decimos que una gráfica es K-
convergente si Kn(G) ∼= Km(G) para alguna n < m; caso contrario decimos
que es K-divergente. Una gráfica G es cordal si todo ciclo de longitud al
menos 4 tiene una cuerda. Si el complemento de G es cordal, decimos que
G es cocordal. Un octaedro On es el complemento de n aristas disjuntas.
Un suboctaedro fuerte de G es una subgráfica inducida de G isomorfa a On,
tal que uno de los clanes del octaedro inducido es también un clan de G.

Experimentos computacionales y resultados preliminares sugieren que
el K-comportamiento de una gráfica cocordal siempre se puede determi-
nar con criterios conocidos: Al parecer, una gráfica cocordal siempre se
desmantela a una gráfica clan-Helly (y por tanto es K-convergente) o se
retrae a un octaedro On con n ≥ 3 (y por lo tanto es K-divergente). Sea N
la dimensión máxima de un suboctaedro fuerte ON de G; defina N = 0 si
G no tiene suboctaedros fuertes. Los casos a considerar son:

N = 0: G es desmantelable a un vértice (K-convergente).
N = 1: G es desmantelable a una gráfica sin aristas (K-convergente).
N = 2: G es desmantelable a una gráfica clan-Helly (K-convergente).
N ≥ 3: G se retrae a un octaedro ON (K-divergente).

Ya hemos logrado demostrar los casos N = 0, N = 1 y N ≥ 3 usando
técnicas de topología combinatoria, mientras que el caso N = 2 es un re-
sultado experimental (con algo de sustento teórico también) que todavía
requiere ser probado o desmentido. En esta plática reportaremos nuestros
avances en torno a estas investigaciones aún no publicadas.
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Hardness of the f -Reversible Process in Directed Graphs†

Isac Costa ∗ Carlos V.G.C. Lima Thiago Marcilon
CCT - UFCA, Juazeiro do Norte, Brazil

Keywords: Reversible Process, Infection, Directed Graph, Hitting Set,
DAG’s

Given a graph G and a function f :V (G)→N we study the iterative process
on G such that, given an initial vertex labeling c0 : V (G) → {0,1}, each
vertex v changes its label if and only if v has at least f (v) neighbors with the
opposite one. We call such processes as f -reversible processes and denote
them by Pf (G,c0) = (c0,c1, . . .), such that ct : V (G)→ {0,1} is called the
configuration at time step t ∈ N. Moreover, ct(v) denotes the state of v, at
t ∈ N. In non oriented graphs (Dourado et al., Reversible iterative graph
processes, Theor. Comput. Sci. 460, (2012), 16–25), a vertex v takes into
account all the states of its neighbors in order to obtain the state in the next
time step. We deal with a slightly modification on an orientation D of a
graph G = (V,E), that is, a digraph obtained from G by replacing each edge
by exactly one of the two possible arcs with the same end vertices. Now, a
vertex takes into account all of its inner neighbors in order to define its next
state. We study the problem of determining the minimum cardinality r f (G)
of a vertex subset initially infected (of state equal to 1) so that all vertices
become infected as well. We call such a subset as an f -conversion set
of G and we say that the process converges. (Dourado et al., Reversible
iterative graph processes, Theor. Comput. Sci. 460, (2012), 16–25) show
that r f (G) =V (G) of an undirected graph G when all thresholds are equal
to 1 and that determining whether r f (G) ≤ k when the thresholds are all
equal to 2 is NP-hard, but polynomial for trees. Moreover, it remains
open to determining r f (P), for an induced path P with thresholds in {1,2}.
We prove that the directed version can be solved for acyclic orientations
in linear time, for any thresholds, and that it is W[2]-hard to determine
whether r f (G) ≤ k, even if all thresholds are equal to 1, there exists only
one cycle in G, and the process converges into two time steps.

†Partially supported by UFCA and CNPq Universal [422912/2021-2] grants.
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How to draw a K(n,2) Kneser graph?†

A. D. R. de Sousa1∗ J. C. Carneiro1 L. Faria1 M. V. Pabon2
1 UERJ 2 Université Paris-13

Keywords: Kneser graph K(n,k), crossing number, 2-page crossing number

Take a 2-page drawing D(K2⌈ n
2 ⌉−1) of the complete graph K2⌈ n

2 ⌉−1 from
algorithm (de Klerk, Pasechnik and Salazar (2013)) (a), (b) and (c). Re-
place each vertex of K2⌈ n

2 ⌉−1 by q = ⌈n−1
2 ⌉ vertices corresponding to clique

Ci, i ∈ {1,2, . . . ,2⌈ n
2⌉− 1} with the order of the Hamiltonian cycle from al-

gorithm (Berge (1973)). Add the edges between the pair of vertices of
each 2 cliques according to the geometric position of the D(K2⌈ n

2 ⌉−1) edges.
Place the 1-page drawing of K⌈ n−1

2 ⌉ from (de Klerk, Pasechnik and Salazar
(2013)) for each clique Ci on the half-plane with the fewest outgoing edges
of the vertex Ci of D(K2⌈ n

2 ⌉−1) (d).
Let ν(G) and ν2(G) be the minimum number of crossings for a drawing

D(G) of G, respectively, in the plane, and into a 2-page drawing, we prove
that n8

213 − 9 n7
213 −

n6
210 −

n4
27 −

n3
29 ≤ ν(K(n,2)) ≤ ν2(K(n,2)) ≤ n8

210 −
3n7
28 +

31n6
283 + 7n5

26 − 563n4
273 + 517n3

253 − 267n2
25 + 107n
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Figure 1 2-page drawing construction of K5 in (a) and (b), and 2-page drawings
of K5 in (c) and K(6,2) in (d).

† CAPES 001, CNPq 406036/2021-7, 308654/2018-8, 152340/2021-1, FAPERJ
E26/202.902/2018.
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Fullerene Waves
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2 Universidade Federal do Rio de Janeiro
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Keywords: Graph. Fullerene. Fullerene Nanodisc. Diameter

Fullerene graphs are 3-connected, cubic and planar graph with only pentag-
onal (exactly 12) and hexagonal faces. Andova and Škrekovski (2013) [1],
after studying Fullerene graphs with full icosahedral symmetry, conjectured

that the diameter of a Fullerene graph on n vertices is at least
⌊√

5n
3

⌋
− 1.

Fullerene nanodiscs are Fullerene graphs formed by grouping the hexag-
onal faces into two opposite isomorphic discs glued along their boundaries
by a strip containing the 12 pentagonal faces. Nicodemos e Stehlík (2016)
[2] disproved Andova and Škrekovski’s conjecture showing that Fullerene

nanodiscs on n ≥ 300 vertices have diameter at most
√

4n
3 . Since then,

finding which classes of Fullerene graphs satisfy the conjecture is an open
problem. We have found another class of Fullerene graphs that disproves
the aforementioned conjecture: Fullerene 1-nanodiscs.

A Fullerene 1-nanodiscs are Fullerene graphs with Fullerene nanodiscs
similar construction: two opposite isomorphic discs glued along their
boundaries by a strip. However, in each disc we have one pentagonal face
and the strip now contais just 10 pentagonal faces. We show that the diame-

ter of Fullerene 1-nanodiscs on n vertices is at most
√

8n
5 − 1.This gives us

indications that nanodiscs may be a boundary class between the Fullerenes
that satisfy and those that do not satisfy Andova and Skrekovski’s conjec-
ture.

References
[1] Andova, Vesna and Škrekovski, Riste, Diameter of fullerene graphs with full
icosahedral symmetry, MATCH Commun. Math. Comput. Chem, (2013), Volume
70 (1), 205–220.
[2] Nicodemos, Diego and Stehlík, Matěj, Fullerene graphs of small diameter,
arXiv preprint arXiv:1604.01934, (2016).
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On Total Colouring Bipartite Graphs
with at Most Three Bicliques†

Gustavo L. Montanheiro 1,∗ Leandro M. Zatesko 1

Marina E. Groshaus 1,2
1 UTFPR, Brazil 2 CONICET, Argentina

Keywords: Graph total colouring, Bicliques, Bipartite graphs

The problem of determining the total chromatic number has been studied
for many graph classes, including graphs with few cliques. For graphs with
a universal vertex, it was solved by Hilton in 1990. In 2012, Campos et
al. solved the problem for split-indifference graphs, all of which have at
most three cliques, proving that such a graph G is: Type 2 if G has some
∆ -subgraph H (i.e a subgraph with ∆(H) = ∆(G)) which has a universal
vertex and is Type 2; Type 1 otherwise. In 1991, Hilton also solved the
problem for bipartite graphs with adjacent bi-universal vertices (a vertex
in a part of a bipartite graph is bi-universal if it is adjacent to all vertices
in the other part). We conjecture that a bipartite graph G with at most
three bicliques is: Type 2 if G has some Type 2 ∆ -subgraph with adjacent
bi-universal vertices; Type 1 otherwise. If G has at most two bicliques,
then the conjecture holds by Hilton’s result. If G has three bicliques, we
prove that the graph obtained after successively removing twins is either a
P5 (Fig. 1) or an A (Fig. 2). For the latter case, G has adjacent bi-universal
vertices. For the former case, let A, B, C, D, E be the sets of twin vertices
as in Fig. 1, being a, b, c, d, e their corresponding cardinalities, with
a ≥ e. Then, we prove that our conjecture holds for all the following cases:
b+d = c+a > ad+min(a,d); b+d > c+a; b+d < c+a; max(d,e)< a
and ad ≥ b. So, the conjecture remains open when b+ d = c+ a ≤ ad +
min(a,d) and: either d ≥ a, or a = e > d.

B

C

D

EA

Figure 1 Figure 2

†Partially supported by CNPq (428941/2016-8 and 420079/2021-1).
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Local antimagicchromatic number of Bethe trees

Francisca A. M. França1,∗ Andre E. Brondani1

Lara R. Ventura1
1 Universidade Federal Fluminense, Volta Redonda, RJ

Keywords: Local antimagic labeling, Local antimagic chromatic number,
Bethe tree

Let G = (V,E) be a simple connected graph and let f : E → {1,2, . . . , |E |} be
a bijection. For each u∈V , the weight of u is given by w(u)=

∑
e∈E(u) f (e),

where E(u) is the set of incident edges in u. If w(u) ̸= w(v) for any two
distinct vertices u and v in V , then f is called an antimagic labeling of G. A
graph G is called antimagic if G has an antimagic labeling, (Hartsfield and
Ringel, 1994). A bijection f : E → {1,2, . . . , |E |} is called a local antimagic
labeling if w(u) ̸= w(v) for all {u,v} ∈ E. A graph G is local antimagic if
G has a local antimagic labeling (Arumugam et al., 2017). The local an-
timagic chromatic number χla(G) is the minimum number of colors taken
over all colorings induced by local antimagic labelings of G. Hartsfield and
Ringel (1994), proved that for any tree T with ℓ leaves has χla(T )≥ ℓ+ 1.
In this work, we present some results obtained in the research on local an-
timagic labeling for some subfamilies of Bethe trees, which are rooted tree
with k levels whose root on level 1 and has degree equal to d, the vertices
of levels from 2 to k− 1 have degrees equal to d + 1 and the vertices on the
level k have degree equal to 1.
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On non-equitable color class configurations
for small Type 1 cubic graphs

Matheus Adauto 1,∗ Celina Figueiredo 1 Diana Sasaki 2
1 Federal University of Rio de Janeiro (UFRJ)
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Keywords: Graph Theory, Cubic Graphs, Equitable Total Coloring

A total coloring assigns colors to the vertices and edges of a graph without
conflicts. The Total Coloring Conjecture (TCC) establishes that for any
simple graph G, we have χ ′′(G) ≤ ∆(G)+2. If χ ′′(G) = ∆(G)+ 1, then
the graph is called Type 1. A total coloring is called equitable if the cardi-
nalities of any two color classes differ from at most 1.

The smallest known Type 1 cubic graph with no equitable 4-total col-
oring has 20 vertices. Every 4-total coloring must be equitable on all cubic
graphs with 6, 8, 10, and 14 vertices. For cubic graphs with 12, 16, and
18 vertices, we characterize the color class configurations that might allow
a non-equitable 4-total coloring. We obtained these results by analyzing
the configurations of the total independent sets of cubic graphs with less
than 20 vertices and determining the possible configurations of the color
classes.

We consider the class of circular ladder graphs and generalized Petersen
graphs. We provide non-equitable 4-total colorings for G(8,1), G(8,2), and
G(8,3) with color class configuration 11, 10, 10, 9; and for G(9,1) and
G(9,2) with color class configuration 12, 12, 10, 10, extending the known
non-equitable 4-total colorings for these graphs. We aim to establish for
Type 1 cubic graphs: the smallest value of n for which there is a graph such
that all its 4-total colorings are non-equitable, and the largest value of n
which implies that all 4-total colorings are equitable.
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Locally irregular decompositions of
a class of subcubic graphs
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Given an undirected simple graph G, we are interested in finding the mini-
mum number of colors such that there is a locally irregular decomposition
of G, which is a coloring of E(G) in which the subgraphs induced by each
of the colors have no adjacent vertices with the same degree. We denote
this number by χ ′

irr(G) and call it the irregular chromatic index of G. If
such edge coloring exists we say G is decomposable. The main conjecture
on locally irregular decompositions is given below.

Conjecture 1 — Baudon, Bensmail, Przybyło, Woźniak (2015). For
every decomposable graph G, we have χ ′

irr(G)≤ 3.

The conjecture does not hold in its full generality, but so far only one
graph G (with 10 vertices) is known for which χ ′

irr(G) = 4. We present
our results related to Conjecture 1 for subcubic graphs, which are graphs
with maximum degree at most 3. These results include an analysis of the
structure of a minimal counterexample for the conjecture, in case it exists,
and the following intermediate results.

Lemma 1 If G is a decomposable subcubic graph with no adjacent
vertices of degree 3, then χ ′

irr(G) ≤ 3. Furthermore, if u ∈ V (G) and
d(u) = 3, there is a locally irregular decomposition of G with 3 colors
such that every edge incident to u has the same color.

Lemma 2 Let G be a non-decomposable graph and v be a vertex that is
not in V (G). If u is a vertex of G with d(u) = 2 that is not contained in
triangles, then χ ′

irr(G
′)≤ 3, where G ′ is a graph with V (G ′) =V (G)∪

{v} and E(G ′) = E(G)∪ {uv}. Furthermore, G ′ admits a locally irregular
decomposition with 3 colors where every edge incident to u has the
same color.
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On tessellations and graph operations:
Adding pendant and false twin vertices
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Portugal et al. proposed the staggered quantum walk model, which is more
general than the previous models (Portugal, R., Santos, R., Fernandes,
T., and Gonçalves, D.. The Staggered Quantum walk Model. Quantum
Inf. Process. (2016), 15(1):85-101). In the staggered quantum walk, the
quantum operators that rule the walk are generated from tessellations on
G. A tessellation T is a partition of the vertices of a graph into cliques.
We say that an edge belongs to a tessellation T if its endpoints belong to
the same clique in T . We say that T = {T1, ...,Tn} is a tessellation cover
if T =

⋃n
i=1Ti covers all edges of G. Abreu et al. proved that T (G) ≤

min{χ ′(G),χ(K(G))} for any graph G, where T (G) is the size of a smallest
tessellation cover of G, and they also showed that adding a true twin vertex
v ′ of v in G does not change T (G) (Abreu, A., Cunha, L., Figueiredo, C.,
Kowada, L., Marquezino, F., Posner, D., and Portugal, R.. The Graph
Tessellation Cover Number: Chromatic Bounds, Efficient Algorithms and
Hardness. Theor. Comput. Sci. (2020), 801:175-191). In this work, we
proved that adding a pendant vertex v ′ to v in G may increase T (G) at
most in one tessellation, while adding a false twin vertex v ′ of v in G may
increase T (G) in at most χ(Gc[N(v)]) tessellations.
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Reducing the Time Complexity of Computing Square
Roots with Girth at Least Six of a Graph

Cristopher Carcereri1,∗ Aleffer Rocha1 Renato Carmo1
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The square of a graph H is the graph H2 given by V (H2) = V (H) and
E(H2) = {uv ∈ E(H) :dH(u,v) ≤ 2}. The graph H is then called a square
root of H2. The girth of a graph G is the length of a shortest cycle in G.
Farzad, Lau, Le and Tuy provided an O(δ ·n4) algorithm to compute the
square root with girth at least six of a graph G with n vertices and minimum
degree δ , if it exists (Farzad, Lau, Le and Tuy, 2009). The factor n4 comes
from a step to verify that a potential solution does not contain a 4-cycle. We
show that the complexity of the algorithm can be reduced to O(δ ·M(n))
(where M(n) is the time to multiply two n×n matrices) through the use of
a more efficient algorithm for 4-cycle detection. We note that, currently,
M(n) = O(n2.373) (Alman and Williams, 2021) so that the complexity of
the algorithm is reduced to O(δ ·n2.373).



LAWCG’ 22 55

On iterated clique graphs with exponential growth

M.A. Pizaña 1 I.A. Robles 2,∗
1 Universidad Autónoma Metropolitana - Iztapalapa

Mexico City, 09340, Mexico.
2 Universidad Autónoma Metropolitana - Cuajimalpa

Mexico City, 05348, Mexico.

Keywords: graph theory, graph dynamics, iterated clique graphs

The clique graph K(G) of a graph G is the intersection graph of the set of
all (maximal) cliques of G. The iterated clique graphs Kn(G) are defined
inductively by K0(G) = G and Kn+1(G) = K(Kn(G)).

Let |Kn(G)| be the order of Kn(G) and let fG(n) = |Kn(G)|, be the
clique growth function of G. Given a function g(n), a problem that arises is
whether a graph G exists such that fG(n) =Θ(g(n)). There are examples
of graphs G where fG(n) is linear (Larrión and Nuemann-Lara, 1997),
polynomial (Larrión and V. Neumann-Lara, 1999) or super-exponential
(Larrión, Neumann-Lara and Pizaña, 2009). Nevertheless, it is not known
if there are graphs with exponential growth (i.e., fG(n) =Θ(an) for some
a > 1).

In this talk we will show some results of our current investigation on
this problem (a work in progress).
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Critical generators of K5
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Let H be a graph, the clique graph K(H) of H is defined as having the
cliques of H as vertices and two cliques Ci and C j being adjacent in K(H)
if and only if Ci ∩C j ̸= /0. The graph H is said to be clique critical if
K(H) ̸= K(H−x) for all x ∈V (H), where H−x is the graph obtained from
H by removing the vertex x and all the edges incident on it . This notion of
clique-critical graph was introduced by Escalante and Toft (1974). If H is
a clique critical graph then we say that H is a critical generator of K(H).

It is not easy to know when a graph is a clique graph, much less what
its generators are. Roberts and Spencer (1971) showed that a graph G is a
clique graph if there exists a family edge cover of G satisfying the Helly
property. We called these families, RS-families. Gutierrez and Meidanis
(2006) showed that if there is a separating (the intersection of all the mem-
bers containing v is v) RS-family then the intersection graph of this family
is a generator of G.

It is known that K3 has two critical generators (K1,3,4− f an) and K4
has seven critical generators.

In this work we present how to obtain the fortythree critical generators
of K5 looking for its minimal RS-separating families.
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Containment among classes of interval
graphs with interval count k

Lívia Medeiros 1,∗ Fabiano Oliveira 2 Jayme Szwarcfiter 3
1,2 IME – (UERJ) Rio de Janeiro – Brazil

3 COPPE, NCE, IM – (UFRJ) Rio de Janeiro – Brazil
liviasmedeiros@gmail.com, fabiano.oliveira@ime.uerj.br, jayme@nce.ufrj.br

Keywords: interval count, interval graphs, interval orders

A graph G is an interval graph if there exists a bijection θ of V (G) to a
family M of intervals on the real line, called a model, in which for all
u,v ∈ V (G) with u ̸= v, (u,v) ∈ E(G) if and only if θ(u)∩θ(v) ̸= /0. An
interval order is a partial order on a family of intervals on the real line in
which the precedence relation corresponds to that of the intervals, that is,
the interval Ia precedes the interval Ib in the order if and only if Ia is entirely
to the left of Ib.

Ronald Graham suggested the problem of determining a model of a
given interval graph having the smallest number of distinct interval lengths,
which is called the interval count problem. An {a,b}-model is a model in
which each interval has length a or b. The class of graphs which admit an
{a,b}-model is denoted by LEN(a,b). Skrien provided a characterization
for LEN(0,1). Rautenbach and Szwarcfiter described a characterization and
a linear-time algorithm to recognize graphs of LEN(0,1). Boyadzhiyska,
Isaak and Trenk presented a characterization for interval orders which admit
a {0,1}-model, and partially for those which admit a {1,2}-model. But, the
question regarding the inclusion relation among these two classes was not
considered. In Francis et al. (Francis, M. C., Medeiros, L. S., Oliveira,
F. S., and Szwarcfiter, J. L., On subclasses of interval count two and on
Fishburn’s conjecture. Discrete Appl. Math., 2022 (to appear)), it has been
shown that LEN(a ′,b ′) ⊈ LEN(a,b) for all 0 < a ′ < b ′ and 0 < a < b if
and only if b ′

a ′ ̸= b
a . The motivation of this work was to investigate the

more general inclusion relationship between the classes LEN(a1, . . . ,ak)
and LEN(b1,b2, . . . ,bk). For all 0< a1 < a2 . . . < ak, and 0< b1 < b2 . . . <
bk, we prove that LEN(a1,a2, . . . ,ak) ⊈ LEN(b1,b2, . . . ,bk) if and only if
there does not exist constant r such that b j = ra j for all 1≤ j ≤ k. We also
discuss the case for a1 = 0 or b1 = 0.
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Given a poset P = (X ,P) we say that a family of sets F = (Fx)x∈X is a
containment model of P if each element x can be assigned to a set of Fx

such that x < y in P ↔ Fx ⊂ Fy. When the elements of the family F are
paths of a tree we say that P is a CPT poset [2]. In [1] we prove the
following necessary condition for a poset P to be CPT :

The down-set of each vertex of P induces a CI subposet. (i)
The comparability graph of P is the simple graph GP = (X ,E) where

xy ∈ E if and only if x < y in P or x > y in P. Two posets are associated if
their comparability graphs are isomorphic. If P and its dual poset Pd are
CPT we say that P is dually-CPT . If P and every other poset associated
with P are CPT we say P is strongly-CPT .

We say that a poset P = (X ,P) is cycle-free if its comparability graph
GP is a chordal graph. In this paper we prove that chordal posets admit a
recursive construction process. Moreover, condition (i) is also sufficient for
the class of chordal posets. As a consequence we obtain a characterization
of CPT chordal posets by an infinite family of minimal forbidden subposets.
Moreover, we obtain a characterization of the dually-CPT posets.

References
[1] L. Alcón, N. Gudiño, M. Gutierrez, Recent results on containment graphs of
paths in a tree, Discrete Applied Mathematics, (2018), Volume 245, 139–147.
[2] Golumbic, M. C. and Scheinerman, E. R., Containment Graphs, Posets, and
Related Classes of Graphs, Combinatorial Mathematics: Proceedings of the Third
International Conference, (1989), Volume 555, 192–204.
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The thinness of a graph is a measure of “how distant” the graph is from an
interval graph (Carlo Mannino et al, The stable set problem and the thin-
ness of a graph, Operations Research Letters 35.1 (2007), 1–9), which are
exactly the graphs with thinness 1. In this work we introduce an analogous
concept, the chordal thinness. A graph G is said to be k-chordal thin if there
are a k-partition V1, . . . ,Vk and an ordering v1, . . . ,vn of V (G) such that for
each vi and each Vj, the set N(vi)∩ {vi+1, . . . ,vn}∩Vj induces a clique. Note
that in the case k = 1 this condition is equivalent to say that the ordering is
a perfect elimination order.

In this work, we determine the complexity of some classic problems
in graphs of bounded chordal thinness. We show that INDEPENDENT SET

remains NP-Hard even in graphs of chordal thinness 3, and that CLIQUE is
NP-Hard for k-chordal thin graphs when k ≥ 3 and in P otherwise. More-
over, we investigate problems regarding recognition and show that, given a
k-partition of the vertices, finding an ordering consistent with it is polyno-
mially solvable, while finding a k-partition given the ordering is NP-Hard.

Furthermore, we show some results about how k-chordal thin graphs
relate to other graph classes. In particular, we show that strictly subcubic
graphs have bounded chordal thinness and that (1,k)-graphs, the graphs that
can be partitioned into 1 independent set and k cliques, are k-thin graphs.
We also present a relation between cographs and its chordal thinness, show-
ing also that the chordal thinness of a cograph can be found in polynomial
time. On top of that, we show upper bounds relating k-chordal thinness
with other well studied graph properties.

†Partially supported by FAPEMIG and CNPq.
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A graph is called split if its vertex set can be partitioned into a stable set
and a clique. In this talk we present results on two variants of split graphs.

A graph G is polar if its vertex set can be partitioned into two sets A
and B such that G[A] is a complete multipartite graph and G[B] is a disjoint
union of complete graphs. If G[B] in a independent set then G is called
monopolar. J. L. Szwarcfiter and M. R. Cerioli (1999) characterized the
starlike graphs a subclass of monopolar graphs. A 2-unipolar graph is a
polar graph G such that G[A] is a clique and G[B] the disjoint union of
complete graphs with at most two vertices. We present a characterization
for 2-unipolar graphs and show that they can be represented as intersection
of substars of a special cactus.

Let G be a graph class, the G -width of a graph G is the minimum
positive integer k such that there exist k independent sets N1, . . . ,Nk such
that a set F of nonedges of G, whose endpoints belong to some Ni with
i = 1, . . . ,k, can be added so that the resulting graph G ′ belongs to G . We
said that a graph G is k-probe-G if it has G -width at most k and when G is
the class of split graphs it is denominated k-probe-split. The 1-probe split
graphs was characterized by V. Bang Le and H. N. de Ridder (2007). We
present a characterization by minimal forbidden induced induced subgraphs
for 2-probe-split graphs and a result on the complexity of the problem of
deciding if a graph is k-probe-split graph.
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Monkey Hash Map: a highly performant
thread-safe map without locks
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Hash tables are arguably the most powerful data structures ever known. A
shared data structure is lock-free if infinitely often some thread completes
its task within a finite number of steps. A shared data structure is wait-free
if each thread completes its execution within a finite number of steps.

We exploit multiple-choice hashing to create a high-performance, wait-
free hashing scheme with O(1) worst-case time for lookup, getValue, insert,
update and remove operations, a hash table that provides thread-safety
without requiring any kind of thread synchronization. In short, our monkey
hashing scheme consists of a single hash table and a family of k ≥ 1 hash
functions, meaning multiple alternative locations for each key in the same
table. Unlike what happens in the well-known cuckoo hashing, elements
will never be evicted from where they first landed, so new keys being
inserted must always find an unoccupied spot to call their own. The actual
counts of hash functions in use are kept track of, making it possible that
lookups of absent keys fail before the entire family of hash functions has
been exhausted. Dynamic memory allocation—and its inherent pauses,
e.g. garbage collection—is avoided via a key-value object pool, and thread-
safe is attained via (i) pre-allocation of the underlying array, meaning no
rehashing will ever take place, and (ii) the fact that no collision-handling
lists are called for, by design.

The proposed scheme works particularly well in scenarios with a sin-
gle writer and multiple reader threads, dramatically outperforming popu-
lar solutions such as ConcurrentHashMap (Java) and Intel TBB concur-
rent_hash_map (C++) in heavily concurrent test scenarios. The prices to
pay are (i) eventual consistency, which is dealt with well in numerous con-
current settings, and (ii) a non-zero probability that an insertion might fail,
which can be made small enough, though, to suit all imaginable applica-
tions.
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In this work we present the application of clique-based problems in algo-
rithmic strategies for predicting the spatial structure of complex molecules.
A clique C is a subset of vertices C ⊆V in an undirected graph G = (V,E)
where all vertices are adjacent to each other, and then, if there is a subset of
k vertices that are connected to each other, that graph contains a k-clique.
Moreover, a maximal clique is a subgraph H ⊆ G isomorphic to a com-
plete graph and there is no vertex v ∈ V (G) \V (H) so that v is adjacent
to each vertex of H (Bondy and Murty, 1976)(Szwarcfiter, 2018). To de-
termine if there is a clique of a given size in a graph is NP-complete, and
one of variants of this general problem is to list all the maximal cliques
of a graph, these can be found by the Bron-Kerbosh algorithm, a back-
tracking algorithm of O(3n/3) time complexity. Another variation is to find
all cliques of size k, where the brute-force algorithm for any trivial case
has complexity O(nkk2). We handle these variations of clique search and
their intersection and coverage properties on atomic data instances for the
Molecular Distance Geometry problem (MDGP). Given a molecule formed
by n atoms a1,a2, . . . ,an and a set of distances di j. The MDGP is to obtain
a three-dimensional configuration x1,x2, . . . ,xn for the molecule respecting
the set of distances (Lavor et. al., 2012). The MDGP in a complete set
of distances can be solved in polynomial time, otherwise the problem is
NP-hard for R2 or more (Santos et. al., 2021). In this work we determine
some maximal and k-cliques, k ≤ 20, of NMR protein structures (protein
partial instances) to investigate the possibility of using a cliques search
preprocessing to improve an strategy based on incomplete sets resolution
methods(Wu and Wu,2007)(Souza,2021), by performing the insertion of
complete subsets of distances (K-cliques) into the plane, maintaining the
single-atom immersion rules of the original algorithm.
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COVID-19 mortality prediction - Perceptron and Random
Forest applications†
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In Brazil, DATASUS centralizes data on the evolution of COVID-19. Per-
ceptron is a binary classifier based on a linear separator, yielding a hyper-
plane separating the data into two classes: points in the region above the
hyperplane are classified as 1 while below as 0. Random forest can also
be used as a classifier, consisting of several decision trees. They are ma-
chine learning methods that work based on training and validating turns
used for decision taking. Both methods were recently worldwide used for
COVID-19 mortality prediction. Moulaei et al. (2022) used random forest
for mortality of COVID-19, the accuracy was 95%, using 1500 patients
from Iran. Borghi et al. (2021) used single and multiple layer Perceptron
to predict to predict the number of deaths and infections over six days. In
this paper the DATASUS file provides 440,915 valid patients, which Per-
ceptron successfully predicted 77.7% and the Random Forest 78%. We
experimentally found that the COVID-19 database is not separable. Hence,
our strategy to use Perceptron on this problem consisted of in each iteration
algorithm, selecting the current hyperplane that better separates the training
data set.

† CAPES 001, CNPq 406036/2021-7, 308654/2018-8, 152340/2021-1, FAPERJ
E26/202.902/2018.
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In information theory, there is a common trade-off that arises in data trans-
mission processes: data compression and preparation for error detection.
While data compression shrinks the message as much as possible, data
preparation for error detection adds redundancy to messages so that a re-
ceiver can detect corrupted bits, and fix them when possible.

Data compression can be achieved using different strategies. One of
the most traditional methods is that of Huffman (David A. Huffman, A
method for the construction of minimum redundancy codes, Proceedings
of the IRE (1951), 40:1098–1101), which uses binary rooted trees, known
as Huffman trees, to encode the symbols of a given message.

In 1980, Hamming proposed the union of both compression and er-
ror detection features through a structure called Hamming-Huffman tree
(Richard W. Hamming, Coding and Information Theory, Prentice-Hall
(1986)). This data structure compresses data similarly to Huffman trees
with the additional feature of enabling error detection. In contrast to Huff-
man trees, building optimal Hamming-Huffman trees is still an open prob-
lem.

In this work, we define a more restricted version of the problem of build-
ing optimal Hamming-Huffman trees. We tackle the problem of building
optimal Hamming-Huffman trees in which the symbol leaves lie in exactly
k-distinct levels. For k ≤ 2, we presented a polynomial time algorithm to
solve the problem. Moreover, we proved that, for symbols with uniform
frequencies, the optimal tree has at most five distinct levels with symbol
leaves.
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A simple proof of the bijection between Minimal Feedback
Arc Sets and Hamiltonian Paths in tournaments

Rafael Schneider Fábio Botler
Rio de Janeiro Federal University (UFRJ)

Keywords: Minimal feedback arc set, Hamiltonian Paths, Tournament

In what follows, fix a tournament T , i.e., an orientation of the arcs of
a complete graph. It is known that every tournament has a Hamiltonian
path, i.e., a (directed) path that contains all of its vertices. Given a vertex
v ∈ V (T ), let A+(v) = {vw ∈ A(T ) : w ∈ V (T )} and A−(v) = {uv ∈ A(T ) :
u ∈V (T )}, and put A(v) = A−(v)∪A+(v).

A set of arcs F ⊆ A(T ) is a feedback arc set (FAS) if T \F is acyclic;
and a FAS F is minimal (MFAS) if F − uv is not a FAS for every arc
uv ∈ F . In 1988, its was shown (Bar-Noy, A., & Naor, J. (1990). Sorting,
minimal feedback sets, and Hamilton paths in tournaments. SIAM Journal
on Discrete Mathematics, 3(1), 7-20]) that in any tournament there is a one-
to-one relation between its MFASs and its Hamiltonian paths. We present
an alternative proof of this result.

Let P = v1 · · ·vn be a Hamiltonian path in T . We say that viv j is a
backward arc (w.r.t. P) if i > j. Note that, for such an arc, P∪viv j contains
a cycle. Then the set F of backwards arcs w.r.t P is an MFAS of T . In
this case, we say that P induces F . It is not hard to check that distinct
Hamiltonian paths induce distinct MFASs.

We now present an injection from the MFASs to the Hamiltonian paths
of T . Given an MFAS F , a vertex v ∈ V is called an F-initial vertex if
F ∩A(v) = A−(v). We can prove that there is precisely one F-initial vertex
in T , say u1. Let T ′ = T −u1 and let F ′ = F ∩A(T ′). It is not hard to check
that F ′ is an MFAS of T ′. Now, let u2 be the (unique) F ′-initial vertex of
T ′. We claim that u1 → u2. Indeed, if u2 → u1, then, by the minimality of F ,
there is a u1u2-path in T \F (with at least two arcs), which is a contradiction,
because A−(u2) ⊆ F ′ ⊆ F . The result now follows by repeating this step,
and uniqueness of F-initial vertices guarantees that this is an injection.
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Control flow graph, formal verification and constraint
programming techniques

Jesse Deveza 1,∗ Lanier Santos 1

Rosiane de Freitas 1 Lucas Cordeiro2,1
1 Institute of Computing - UFAM, Brazil

2 University of Manchester, UK

Keywords: bounded-model checking, constraint programming, directed
graph, interval arithmetic, SAT problem.

Formal verification of a program is an undecidable problem because means
checking whether the software conforms to its requirements, which in-
cludes a statement indicating the program must produce a determined an-
swer. But, checking whether the program eventually produces a result is
equivalent to the famous Halting problem, which is undecidable (Hopcroft
and Ullman, 1979). Bounded Model Checking (BMC) is a method that can
achieve decidability, by searching for violations of properties of a program
up to a bound k (Cordeiro et. al., 2009). BMC reduces the program veri-
fication problem to the classic NP-complete Boolean Satisfiability (SAT)
problem, and there are several solvers as the ESBMC, an open-source,
context-bounded model checker based on satisfiability modulo theories
(SMT) for the verification C/C++ programs (Cordeiro et. al., 2009). How-
ever, it can still lead to an exponential state-space exploration due to the
program’s large and possibly unbounded loops. In this case, there might
be many execution paths to traverse through a program during its symbolic
execution (Clarke et al., 2012). Therefore, the control flow or computa-
tion during the program’s execution, mainly in symbolic execution, can be
represented as a directed graph named Control-Flow Graph (CFG). In this
work we present the CFG properties and discuss some preliminary results
of the application of interval arithmetic, constraint programming techiques
and combinatorial methods in steps before and after the main software ver-
ification process via BMC.
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FPT algorithm for feedback vertex set
in reducible flow hypergraphs†

Luerbio Faria 1 André L. P. Guedes 2 Lilian Markenzon 3
1 UERJ 2 UFPR 3 UFRJ

Keywords: feedback vertex set, reducible flow hypergraph, FPT algorithm

A directed hypergraph H = (V,A) is a finite set of vertices V and a set of
hyper-arcs A, where each hyper-arc is an ordered pair of nonempty sub-
sets of vertices. A flow hypergraph H = (V,A,s) is a triple, such that
(V,A) is a directed hypergraph, s ∈ V is a distinguished vertex such that
s reaches every vertex of V . Reducible flow hypergraphs are a general-
ization of Hecht and Ullman’s reducible flowgraphs and are recognizable
in polynomial time (Guedes, Markenzon, Faria (2011)). The FEEDBACK

VERTEX SET (FVS) decision problem has a directed hypergraph H and an
integer k ≥ 0 as input and the question is whether there is V ′ ⊆V, |V ′|≤ k,
such that H \V ′ is an acyclic directed hypergraph. It is known that FVS

is polynomial time solvable for reducible flowgraphs. For reducible flow
hypergraphs it is proved that FVS is NP-complete and there is a polynomial-
time ∆ -approximation for FVS in reducible flow hypergraphs, where ∆

is the maximum number of hyper-arcs adjacent to a vertex of H (Faria,
Guedes, Markenzon (2021)). Each cycle C in a reducible flow hypergraph
has a single entry vertex, vC. Consider an instance (H,k) of FVS with a
positive answer and a minimum cycle C of H. Let VC be the set of vertices
of C that are entry vertices of other cycles of H, hence |VC|≤ k. So, there is
a solution for instance (H,k) with at least one vertex of these entry vertices,
and FVS(H,k) = min{FVS(H − v,k− 1)∪ {v} | v ∈VC ∪ {vC}}. This leads to
a FPT O((k+ 1)km) time algorithm to FEEDBACK VERTEX SET problem
to solve (H,k), where m = |A(H)|.

† CAPES 001, CNPq 406036/2021-7, 308654/2018-8, 152340/2021-1, 420079/2021-
1, 428941/2016-8, FAPERJ E26/202.902/2018.
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Spectral properties of threshold k-uniform hypergraphs

Lucas Portugal 1,∗ Renata Del-Vecchio 2
1 Institute of Mathematics and Statistics - UFF, RJ, Brazil.
2 Institute of Mathematics and Statistics - UFF, RJ, Brazil.

Keywords: Threshold hypergraph; Adjacency matrix; Distinct eigenvalues.

In this work, we define a threshold k-uniform hypergraph with vertex set
V = {1,2, . . . ,n} by a binary sequence (b1,b2, . . . ,bn), where each bi ∈ {0,1},
as following:

• b1 = b2 = . . .= bk−1 = 0;
• for i ≥ k, if bi = 0 and {x1, . . . ,xk} is an edge satisfying x1 < x2 <
.. . < xk, then xk ̸= i;

• for i ≥ k, if bi = 1 then {x1, . . . ,xk−1, i} is an edge, for every possible
(k− 1)-subset {x1, . . . ,xk−1} of V satisfying x1 < x2 < .. . < xk−1 < i.

This generalizes the well known definition of a threshold graph through
the binary sequence of zeros and ones. We study the adjacency matrix and
the spectrum of some subclasses of 3-uniform threshold hypergraphs. As
in the case of threshold graphs, we obtain classes of 3- uniform threshold
hypergraphs with few distinct eigenvalues, more specifically, hypergraphs
with only 4 or 5 distinct eigenvalues and an arbitrary number of vertices.
We also study what happens with the spectrum, considering a k-uniform
threshold hypergraph with k > 3. In this way, we bring to the context of
hypergraphs an important issue of spectral graph theory, the characteriza-
tion of graphs with few distinct eigenvalues



LAWCG’ 22 73

On a semidefinite relaxation for the maximum
k-colourable subgraph problem

Marcel K. de Carli Silva 1 Gabriel Coutinho 2

Rafael Grandsire 3 Thiago Oliveira 4,∗
1,4 Dep. Ciência da Computação, IME-USP

2,3 Dep. Ciência da Computação, ICEx-UFMG

Keywords: semidefinite programming ; k-colourable subgraph ; Lovász
theta function

Let αk(G) denote the size of a largest induced subgraph of G that can
be properly couloured with k colours. A semidefinite relaxation for this
parameter was introduced by Narasimhan and Manber in 1988, in analogy
to the well-known Lovász theta number of a graph:

ϑk(G) = max {⟨J,X⟩ : 0≼ X ≼ I, trX = k,X ◦A(G) = 0} .

Few results were known about this parameter until a recent surge in interest,
with three papers appearing in the past two years. In this present work, we
have shown that ϑk(G)≥ ϕk(G), where

ϕk(G) = max

{
k∑

i=1
λi(B) : B ≽ 0,diagB = 1,B◦A(G) = 0

}
,

where λi(B) stands for the ith largest eigenvalue of B. The case k = 1 was
due to Lovász, who actually showed the equality, but for larger k the proof
is slightly more contrived. In fact, it does not seem that equality holds,
and we pose this as an open question. The importance of our work is that
the equality for the case k = 1 is a key fact in the celebrated theory that
associates the polyhedra STAB and QSTAB with the convex corner known
as the theta body and that leads, among other things, to the polynomial
algorithm to compute α(G) and χ(G) for perfect graphs. The inequality we
showed for ϑk(G) might lead to partial results towards the construction of
an analogous theory for k-colourable subgraphs. Narasimhan and Manber
also showed that ϑk(G) ≤ χk(G). In our work we also discuss a sensible
definition for the fractional version of χk that maintains the inequality.
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Positive semidefiniteness of Aα(G) on
some families of graphs with k cycles

Carla S. Oliveira 1,∗ André E. Brondani 2 Victor Melquiades 1
1 Escola Nacional de Ciências Estatísticas (ENCE/IBGE)

2 Universidade Federal Fluminense (UFF)

Keywords: Eigenvalues, Aα -matrix, cycles

Let G = (V (G),E(G)) be a simple graph of order n. The signless Lapla-
cian matrix of G is defined by Q(G) = D(G)+A(G), where D(G) is the
diagonal matrix of the degrees and A(G) is the adjacency matrix of G.
Nikiforov (2017) defined for any real α ∈ [0,1], the convex linear combi-
nations Aα(G) of A(G) and D(G) the following way Aα(G) = αD(G)+
(1− α)A(G). It is easy to see that A(G) = A0(G),D(G) = A1(G) and
Q(G) = 2A 1

2
(G). The matrix Q(G) is positive semidefinite, but is not true

for Aα(G) if α is sufficiently small. Nikiforov (2017) proved that if α ≥ 1
2

then Aα(G) is positive semidefinite and if α > 1
2 and G has no isolated

vertices then Aα(G) is positive definite. Nikiforov and Rojo (2017) defined
α0(G) as the smallest value in the interval [0,1] such that the minimum
eigenvalues of Aα(G) is non negative. In the same paper, this problem was
solved when G is d-regular, r-colorable and when G contains bipartite com-
ponents. In this work, this problem is solved for some families of graphs
defined the following way: (1) Fa1,a2,...,ak is the family that consist of k cy-
cles of length a1, a2, . . . , ak, respectively which share a vertex, where k ≥ 2
and a1 ≥ a2 ≥ . . . ≥ ak ≥ 3; (2) let n ≥ 3 and k ≥ 2. The graph Gk(Cn)
consists of k cycles of the same size n, where each cycle has one vertex
incidents to one extra vertex, s, that is, V (Gk(Cn)) = (

⋃k
i=1V (Cn))∪ {s} and

E(Gk(Cn)) = (
⋃k

i=1 E(Cn))∪ (
⋃k

i=1{ui,ns}), where ui,n belongs to i-th copy
of V (Cn) for each i, 1≤ i ≤ k.
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On total coloring of subcubic graphs

Luerbio Faria 1 Mauro Nigro 1,∗ Diana Sasaki 1
1 Rio de Janeiro State University, Rio de Janeiro, Brazil

Keywords: total coloring, subcubic graph, non-conformable graphs

A k-total coloring of G connected is an assignment of k colors to the
vertices and edges of G so that adjacent elements have different colors.
The total chromatic number χ ′′(G) is the smallest k for which G has a
k-total coloring. Graphs with χ ′′(G) = ∆(G) + 1 are called Type 1 and
with χ ′′(G) = ∆(G)+2 called Type 2. The deficiency of G be de f (G) =∑

v∈V (G) (∆(G)−d(v)). A (∆(G)+1)-vertex coloring is called conformable
if the number of color classes of parity different from that of |V (G)| is at
most de f (G) (Chetwynd and Hilton, Some refinements of the total chro-
matic number conjecture, Congr. Numer., (1988), pp. 195–216). A graph is
conformable if it has a conformable vertex coloring. Hilton and Hind (2002)
showed that if G is non-conformable, then de f (G)≤ ∆(G)−2. It is well
known that if G is non-conformable, then G is Type 2. A natural question is:
Is there a function f such that if G is Type 2, then de f (G)≤ f (∆(G))? We
know that it holds for ∆(G) = 2 and we answer negatively this statement
for subcubic graphs (Figure 2).

Theorem 2 For each integer k > 0 there is a subcubic graph G with
de f (G) = k which is Type 2.

Figure 2 Type 2 graphs used in the proof of Theorem 1.
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Neighbor distinguishing coloring for cacti graphs
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Given a vertex u and a proper edge coloring c, let S(u) be the set of colors
in the edges incident to u, i.e., S(u) = {c(uv) : uv ∈ E(G)}. A proper edge
coloring c of a graph G is neighbor distinguishing if, for every edge uv ∈
E(G), we have S(u) ̸= S(v). The minimum integer k such that there exists
a neighbor distinguishing edge coloring using k colors for a graph G is the
neighbor distinguishing index of G and it is denoted as χ ′

a(G).
Zhang et al. (2002) conjectured in 2002 that if G is a graph of order

at least 3 and different from C5, then χ ′
a(G) ≤ ∆(G)+2. This conjecture

was verified for bipartite graphs, graphs with maximum degree 3, almost
all 4-regular graphs, and planar graphs with maximum degree at least 12.
The upper bound for the last case was in fact later improved to ∆(G)+ 1.
For a general graph G, it is known that χ ′

a(G) ≤ 3∆(G), and χ ′
a(G) ≤

∆(G)+O(log χ(G)). If G has no isolated edge and ∆(G)≥ 1020, then we
know that χ ′

a(G)≤ ∆(G)+300 (Bonamy and Przybylo, 2017), which was
recently improved to show that χ ′

a(G)≤ ∆(G)+ 19.
A cactus graph is a connected graph in which every two cycles have at

most one vertex in common. In this work we prove that cacti graphs with
order at least 3 and different from C5 do have a neighbor distinguishing
coloring using ∆(G)+2 colors, which means that the conjecture is valid
for cacti graphs.
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Edge-Sum Distinguishing game†‡

Deise L. de Oliveira1,∗ Danilo Artigas1

Simone Dantas1 Atílio G. Luiz2
1 Fluminense Federal University, Brazil.
2 Federal University of Ceará, Brazil.

Keywords: graph labeling, labeling game, maker breaker game, edge-sum
distinguishing game, combinatorial game.

In 2017, Tuza surveyed the area of Graph labeling games, and proposed
the Edge-Sum Distinguishing game (ESD game) which is a type of maker-
breaker graph labeling game where the players, traditionally called Alice
and Bob, alternately assign an unused label f (v) ∈ L = {1, . . . ,s} to an
unlabeled vertex v of a given graph G. If both ends of an edge vw ∈ E(G)
are already labeled, then the (induced) label φ(vw) of the edge vw is defined
as φ(vw) = f (v) + f (w). A move is legal if after it all edge labels are
distinct. Alice (the maker) wins if the graph G has an injective vertex
labeling of all vertices of G that induces distinct edge labels, and Bob (the
breaker) wins if he can prevent this.

Tuza also posed the following question about the ESD game: given
a simple graph G, for which values of s can Alice win the ESD game?
And if Alice wins the ESD game with the set of labels {1, . . . ,s}, can she
also win with {1, . . . ,s+ 1}? In this work, we present the first results in
the literature about this game. We present computational and theoretical
results investigating winning strategies for Alice and Bob on the ESD game
for classical families of graphs. Furthermore, we partially answer Tuza’s
questions by presenting an upper bound on the least number of consecutive
non-negative integer labels necessary for Alice to win the ESD game on a
graph G.

†We dedicate this paper to Professor Jayme Szwarcfiter’s 80th birthday.
‡This work was partially supported by CNPq, CAPES and FAPERJ.
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2 Federal University of Ceará, Brazil
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For a simple graph G = (V (G),E(G)), a k-(2,1)-total labelling of G is a
function π : V (G)∪ E(G) → {0, . . . ,k} such that: π(u) ̸= π(v) for uv ∈
E(G); π(uv) ̸= π(vw) for uv,vw ∈ E(G); and |π(uv) − π(u)| ≥ 2 and
|π(uv)−π(v)|≥ 2 for uv ∈ E(G). The least integer k for which G admits a
k-(2,1)-total labelling is denoted λ t

2(G) and called (2,1)-total number. This
labelling, proposed by Havet and Yu (2002), is a variant of the well-known
L(2,1)-labellings, which have been extensively studied in the literature.

Havet and Yu (2002) conjectured that λ t
2(G)≤ ∆(G)+3 for G having

∆(G)> 2. This conjecture was verified for complete graphs Kn, by showing
that: λ t

2(Kn) = n+2 if n is even and n ̸∈ {2,6,8}; otherwise λ t
2(Kn) = n+ 1

(Chia et al., 2013, Havet and Yu, 2002). The (2,1)-total number has also
been determined for other classes of graphs, such as paths, cycles, near-
ladders, caterpillars, lobsters, and complete bipartite graphs.

In this work, we focus on the (2,1)-total number of powers of paths and
powers of cycles. The k-th power of a graph G is the simple graph obtained
from G by adding edges connecting every pair of vertices at distance at most
k in G. The k-th power of a path Pn is denoted by Pk

n and the k-th power
of a cycle Cn is denoted by Ck

n. We show that λ t
2(P

k
n ) = ∆(Pk

n )+ 1 when
k ∈ {(n−1)/2,(n−2)/2} and λ t

2(P
k
n ) = ∆(Pk

n )+2 when 2≤ k ≤ (n−3)/2.
Moreover, we show that λ t

2(C
k
n) = ∆(Ck

n)+2 when n ≡ 0 (mod 2k+ 1).

†Partially supported by CNPq (425340/2016-3) and CAPES.
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Elecciones con Simetrías

Claudia De la Cruz 1,∗ Miguel Pizaña 2
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Keywords: Generación exhaustiva de gráficas, grupos de permutaciones.

Sean X = {1,2, . . . ,n} y A,B⊆ X . Si consideramos a A y B como sucesiones
de elementos ordenados, debería ser claro cuándo A es un prefijo de B,
denotado por A ≺ B, y cuándo que A es (lexicográficamente) menor que
B, denotado por A < B. Si G es un grupo de permutaciones de X , usamos
notación exponencial para denotar la acción del grupo sobre los elementos
de X , es decir, para x ∈ X y g ∈ G, xg es la imagen de x bajo la permutación
g. De manera natural, G también actúa en los subconjuntos de X , es decir,
Ag = {ag : a ∈ A}. Decimos que A y B son equivalentes (bajo la acción del
grupo) si Ag = B para alguna g ∈ G y lo denotamos como A ∼ B.

Considere el problema de generar todos los subconjuntos de k elemen-
tos de X hasta equivalencia, es decir, generar

(X
k

)
G :=

(X
k

)
/ ∼. En general es

impráctico generar primero todos los k-subconjuntos y luego descartar los
equivalentes, pues

(X
k

)
puede ser gigantesco. En vez de eso lo que hacemos

es ir construyendo
(X

k

)
G y cada uno de sus elementos de manera incremen-

tal y lexicográfica (usando ramificación y poda o backtracking) y podamos
todas las ramas de construcción cada vez que encontramos un prefijo que
ya había sido considerado previamente (hasta equivalencia). Esto se puede
hacer gracias al siguiente lema:

Lema 1 Si A ≺ B, y Ag < A para alguna g ∈ G, entonces Bg < B.

Este problema en particular tiene muchísimas aplicaciones en com-
binatoria computacional, incluyendo búsquedas exhaustivas en espacios
combinatorios, generación exhaustiva de objetos combinatorios (como las
gráficas), y demostraciones asistidas por computadoras. En esta plática, re-
portaremos los avances que hemos realizado en el estudio del estado del arte
del problema y las aplicaciones que estamos considerando. Como ejemplo,
presentaremos la generación automática de jaulas (cages) y la demostración
semiautomática de la unicidad de algunas de ellas, con las herramientas que
estamos desarrollando y que podrán usar los programadores no expertos
en la generación exhaustiva y automática de gráficas sujetas a propiedades
preestablecidas.
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NP-Hardness of perfect rainbow polygons†

David Flores-Peñaloza 1,∗ Andrés Fuentes-Hérnandez 1
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Let S be a k-colored point set in the plane in general position (no three
points on the same line). A perfect rainbow polygon on S is a simple
polygon that contains exactly one point of S of each of the k colors, either
on its interior or on its boundary.

In Rainbow polygons for colored point sets in the plane (D. Flores-
Peñaloza, M. Kano, L. Martínez-Sandoval, D. Orden, J. Tejel, C. D. Tóth,
J. Urrutia, and B. Vogtenhuber, 2021), the authors define and study the
combinatorial problem of determining the number rb-index(k): the smallest
integer such that every k colored point set in general position has a perfect
rainbow polygon with at most rb-index(k) vertices. They conjectured that
the following related problem is NP-Hard:

Given a k-colored point set S in general position, and a pos-
itive integer v, decide whether there exists a perfect rainbow
polygon on S with at most v vertices.

We prove this conjecture is true, reducing from one-in-three 3-SAT.

†Research by David Flores and Andrés Fuentes was supported by the grant UNAM PA-
PIIT, Mexico IN120520. A.F was also supported by a M.Sc. scholarship from CONACYT,
México.
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A blocking set in a graph G is a subset of vertices that intersects every
maximum independent set of G. Let mmbs(G) be the size of a maximum
(inclusion-wise) minimal blocking set of G.

This parameter has recently played an important role in the kernel-
ization of VERTEX COVER with structural parameterizations. Briefly,
Bougeret et al. proved that VERTEX COVER parameterized by distance
to a family F , for a minor-closed family F , admits a polynomial kernel if,
and only if, there exists k ∈ N such that mmbs(G)≤ k, for each G ∈ F .

Given a graph G and k ∈ N, we provide a panorama of the complexity
of deciding whether mmbs(G)≤ k parameterized by k, or by the indepen-
dence number α(G), or both.

Note that, for a given graph G, a blocking set of G is indeed a hitting set
of the hypergraph H have the same vertices as G and whose hyperedges
correspond to the maximum independent sets of G. With this motivation,
we also consider the closely related parameter mmhs(H ), which is the size
of a maximum minimal hitting set of a hypergraph H . We also study the
complexity of determining mmhs(H ), under different parameterizations.

Finally, we consider the problem of computing mmbs(G) parameter-
ized by the treewidth of G, especially relevant in the context of kernel-
ization. Given the “counting” nature of mmbs, it does not seem to be
expressible in monadic second-order logic, hence its tractability does not
follow from Courcelle’s theorem. Our main technical contribution is a
fixed-parameter tractable algorithm for this problem.



LAWCG’ 22 84

Theoretical and empirical analysis of algorithms for the
max-npv project scheduling problem
Isac M. Lacerda*1 Rosiane de F. Rodrigues3

Eber A. Schmitz1 Jayme L. Szwarcfiter1,2
1 Federal University of Rio de Janeiro, Brazil
2 State University of Rio de Janeiro, Brazil
3 Federal University of Amazonas, Brazil

Keywords: Algorithms, computational complexity, directed graphs, factor
analysis, net present value, project scheduling.

The scheduling problem considered in this work refers to maximizing the
Net Present Value (NPV) of projects with precedence constraints between
activities and unrestricted resources. In terms of the three-field notation,
the problem can be presented as ◦ | cpm,δn,c j | max-npv. So, ◦ means
unrestricted resources, cpm means precedence between finish-start activ-
ities with zero lag, δn is the deadline for the project, c j is a cash flow
for each activity, and max-npv is the objective function (maximization
of the net present value). Thus, the objective function can be given as
max

∑n−1
i=2 ci.e−α(si+di). Such function is subject to 1) si+di ≤ s j ∀(i, j)∈E,

meaning that all activity i have finish date less or equal any successor ac-
tivity j (where si and di are the initial date and duration time of activity i),
2) s1 = 0, meaning the first activity has initial date in time zero, 3) sn ≤ δn,
meaning inicial date of the last activity (with duration zero) is less or equal
to the deadline, and 4) si ∈ N; i = 2,3,4...,n, meaning that all initial date
of activities belong the natural numbers. The first and last activities are
called initial dummy (s1) and final dummy (sn), respectively demarcating
the beginning and end of the project (both with zero duration time). For this
problem the three most important algorithms are Recursive Search (RS),
Steepest Ascent Approach (SAA) and Hybrid Search (HS). In this work we
present theoretical and empirical arguments to answer the open question
about the time complexity of these algorithms, related to the number of
times the algorithms perform the search in the generated spanning tree to
find sets of vertices to scheduling.
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The Tower of Hanoi (ToH) game is a game with rich computational mathe-
matical properties and an abstraction of important applications in logistic
problems. The ToH consists of three vertical pegs, labeled 0, 1, and 2, then
we define the set of towers T = {0,1,2}, with n disks with different radii
1, ..., n . ToH is a computationally intractable problem with lower bound
Ω(2n − 1) and upper bound O(2n − 1) due to recursive and interactive algo-
rithms. Any distribution of the n disks over the three sticks, with no larger
disk over the smaller one, is a regular state of the game, and a perfect state
is when the n disks are arranged on just one stick. Each state is uniquely
represented by an element s = sn...s1 ∈ T n, where sd is the pin on which the
disk d is living. A tower game can be reproduced by a graph G = (V, E),
where: V are the vertex set and each vertex correspond to a regular state
of the game and E are the edges and are equivalent to the transitions of a
possible movement. Two vertices are adjacent if they are obtained from
each other by a legal movement of a disk. ToH is one of those games and
can be represented by a connected, flat and simple graph as an approxima-
tion of the Sierpinsk triangle: the Hanoi graph Hn (or Hn

k , with k pins and n
disks) (Poole, D. G., The towers and triangles of Professor Claus (or, Pascal
knows Hanoi), Mathematics Magazine. (1994), 67(5): 323–344). There
are several variations of the ToH regarding the number and size/capacity of
pins, rules and gameplay, such as: the Tower of Oxford (ToO), the Tower
of London (ToL) and the Tower of Bucharest (ToB). We are interested in
exploring its algorithmic strategies and properties in graphs. Furthermore,
we present the Tower of Hanoi-London as an ongoing research.
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In 2003, the frequency assignment problem in cellular networks motivated
Even, Lotker, Ron and Smorodinsky to introduce a new coloring problem:
the Conflict-Free Closed Neighborhood (CFCN) coloring. The goal is to
assign the minimum number of colors to the vertices v of G such that there
exists at least one color appearing exactly once in each closed neighborhood
N[v]. Inspired by this coloring problem, coloring games, and in the search
for upper bounds to the CFCN coloring, in 2021, Huaynoca, Chimelli,
Dantas and Marinho presented the CFCN k-coloring game on classic graph
classes. The CFCN k-coloring game is a maker-breaker combinatorial
game in which two players, Alice and Bob, alternately take turns assigning
one of the k colors to each vertex of a graph G (mapping c :V → {1,2, ...,k})
such that for every v ∈V , if N[v] is fully colored, then there exists u ∈ N[v]
such that c(u) ̸= c(w) for all w ∈ N[v] \ {u}. A coloring of a vertex v is
said to be legal if, after it, in every fully colored neighborhood in which
v belongs, there exists a color that appears exactly once. Alice wins if
she obtains a CFCN k-coloring of G, otherwise Bob wins if he prevents
it from happening. Both players are enabled to start the game, they are
constrained to use only legal coloring in each turn, and they play optimally.
By optimally, it means that the players try to win with the fewest possible
turns or, in case of knowing that is not possible to win the game, delay the
victory of the opponent. In this work, we extend the results obtained in
2021 for the CFCN k-coloring game on complete graphs studying the game
played on a graph composed by the disjoint union of cliques joined with
a single vertex (universal vertex), obtaining, as a particular case, results
on Windmill graphs. Finally, we analyze the game played on other graph
classes.

†This work was partially supported by CNPq, CAPES and FAPERJ.
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Given a graph G, a set S of vertices in G is a general position set if no triple
of vertices from S lie on a common shortest path in G. The gp-achievement
and the gp-avoidance games were introduced by Chandran, Klavžar and
Neethu P.K. (2021) and are played on a graph G by players A and B who
alternately select vertices of G. A selection of a vertex by a player is a legal
move if it has not been selected before and the set of selected vertices so far
forms a general position set of G. The player who picks the last vertex is
the winner in the gp-achievement game and is the loser in the gp-avoidance
game. In this paper, we prove that the gp-achievement and the gp-avoidance
games are PSPACE-complete even on graphs with diameter at most 4. For
this, we prove that the misère play of the classical Node Kayles game is
also PSPACE-complete. As a positive result, we obtain polynomial time
algorithms to decide the winning player of the general position avoidance
game in rook’s graphs, grids, cylinders, and lexicographic products with
complete second factors.
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We deal with variations in graphs of the impartial two-player and finite
combinatorial game known as NIM. In its most known version, two players
take turns choosing one of k,k > 0, heaps of stones and taking at least
one stone from it. Following the normal play convention, the player who
can’t make a move loses. There are many variations of NIM, each with
theoretical challenges and practical applications (Nowakowski, 1998). In
particular, versions in graphs of NIM in the literature change the rules of
from which heaps and how many stones a player can take based on an
underlying graph. One such example is Edge NimG (Fukuyama, 2003),
in which heaps of stones are placed on the edges of a multigraph and a
token is placed in one of its vertices. Each player must move the token to
another vertex following an edge and take at least one stone from that edge.
Another variation is Graph NIM, where the players must remove edges
incident in a vertex of a multigraph. Graph variations of NIM can be solved
through the use of the Sprague-Grundy theorem. However, the computation
of Grundy numbers for each state of the game can be challenging even for
small graphs. As such, it is necessary to make use of optimizations through
the study of how the games behave when played on specific types of graphs,
as we discussed in this work. As ongoing work, we also present a proposal
to generalize Edge NimG with multiple tokens.
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Consider a graph G = (V,E) and C ⊆ V . We obtain the P3-convex hull
(resp. P∗

3 -convex hull) of C by iteratively adding vertices with at least
two neighbors in C (resp. two non-adjacent neighbors in C). We say that
S ⊆ V is P3-Helly-independent (resp. P∗

3 -Helly-independent) when the
intersection of the P3-convex hulls (resp. P∗

3 -convex hulls) of S\ {v} (for all
v ∈ S) is empty.

The P3-Helly number (resp. P∗
3 -Helly number) is the size of a maximum

P3-Helly-independent (resp. P∗
3 -Helly-independent). The edge counterparts

of P3-Helly-independent and P∗
3 -Helly-independent of a graph follow the

same restrictions applied to its edges instead of its vertices. The VP3HI,
VSP3HI, and EP3HI problems aim to determine the P3-Helly number,
P∗
3 -Helly number, and edge P3-Helly number of a graph, respectively.

In 2019, Carvalho, Dantas, Dourado, Posner, and Szwarcfiter proved
that these problems are NP-hard for bipartite graphs. In this work, we
show dynamic programming polynomial time algorithms to solve VP3HI,
VSP3HI, and EP3HI on trees (acyclic connected graph).

†We are sincerely grateful to professor Jayme Szwarcfiter for this collaboration, and
we dedicate this work to his 80th anniversary.

‡This work was partially supported by CNPq, CAPES and FAPERJ.
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A biclique is a maximal bipartite-complete set of vertices within a graph.
Bicliques are a subject closely related to cliques, as a biclique in a graph G
is a clique in G2 (the square graph of G).

A biclique graph is the intersection graph of all the bicliques in a graph.
The study of biclique graphs provides important insights into the structural
properties of different graph classes, especially bipartite graphs.

In our work, we study the biclique graphs of circular arc bigraphs. A
bipartite graph is a circular arc bigraph if there exists a bijection between
its vertices and a family of arcs on a circle such that two vertices of op-
posing partite sets are neighbors if and only if their corresponding arcs
intersect. We show that the biclique graphs of the Helly subclass of cir-
cular arc bigraphs are proper circular arc graphs, and provide a structural
characterization of the biclique graphs of non-bichordal Helly circular arc
bigraphs.

The biclique graph of a given triangle-free graph G is the square of
its mutually included biclique graph. The concept of mutually included
biclique graphs, introduced by Groshaus and Guedes, is applied in the
characterization of the biclique graphs of triangle-free graphs.

We show a structural characterization for the mutually included bi-
clique graphs of non-bichordal Helly circular arc bigraphs, and prove that
the mutually included biclique graphs of normal-proper-Helly circular arc
bigraphs are proper circular arc graphs and, therefore, that their biclique
graphs are the squares of proper circular arc graphs.

†CAPES, CNPq 420079/2021-1, 428941/2016-8, CONICET.
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A tree t-spanner of a graph G is a spanning tree of G in which the distance
between any pair of vertices is at most t times their distance in G. The
TREE t-SPANNER PROBLEM (TREESt) asks whether a given graph admits
a tree t-spanner. Cai and Corneil (1995) showed that TREESt can be solved
in linear time when t = 2, and is NP-complete when t ≥ 4. The case
t = 3 remains open. It is known that TREES3 can be solved in polynomial
time for some classes of graphs, such as planar, convex, interval, and split
graphs. Fomin, Golovach and van Leeuwen (2011) proved that TREESt

can be solved in polynomial time on bounded-degree graphs (using results
on treewidth).

We study TREES3 on the class of prisms of graphs, and characterize
those that admit a 3-spanner. The prism of a graph G is the graph obtained
by considering two copies of G, and by linking its corresponding vertices
by an edge (also defined as the Cartesian product G×K2). Couto and
Cunha (2021) showed that TREESt is NP-complete for t ≥ 5, even on
the class of prisms of graphs. The characterization we show is based on
simple properties of the nontrivial blocks of a block tree decomposition
of G. As a result, we obtain a linear-time algorithm for TREES3 (and the
corresponding search problem) on this class of graphs.
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El complemento G de una gráfica G es la gráfica obtenida de G al eliminar
todas sus aristas y agregar como aristas a todos los pares de no-aristas de
G. El cuadrado G2 de G es la gráfica que se obtiene de G al conectar con
aristas a todos los vértices que estén a distancia a lo más 2 en G. Una gráfica
es cuadrado-complementaria (squco por abreviar) si G ∼= G2. El estudio
de gráficas squco fue iniciado por Schuster (1981) y luego continuado por
Akiyama et al. (Disc. Math. 34 (1981), 209–218), Baltić, et al. (1994),
Milanič, et al. (Disc. Math. 327 (2014), 62–75) entre varios otros.

Las gráficas squco, se estudian en el contexto de la Dinámica de Gráfi-
cas (Prisner, Chapman & Hall/CRC Research Notes in Mathematics Series,
1995) y en particular en el subtema de Ecuaciones Gráficas en donde las
ecuaciones que son consideradas más interesantes son aquellas en las que
sus soluciones no han logrado ser caracterizadas, como es el caso de la
ecuación que define a las gráficas squco: G ∼= G2.

Decimos que una gráfica squco H extiende a otra gráfica squco G si G
es una subgráfica inducida de H. Solamente hay dos métodos conocidos
para extender gráficas squco, ambos reportados por Milanič et al. en 2014,
como Lemma 2.1 y Proposition 2.5 (el primer resultado fue publicado
originalmente por Baltić, et al. en 1994).

En esta plática presentaremos un nuevo método de extensión de gráficas
squco que unifica y generaliza estos dos resultados.
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A connection tree of a graph G for a terminal set W ⊆ V (G) is a tree
subgraph T of G such that leaves(T ) ⊆ W ⊆ V (T ). STEINER TREE is a
fundamental network design problem, whose input consists of a graph G,
a terminal set W, and a non-negative integer k, aiming at deciding whether
there is a connection tree of G for W with at most k non-terminal vertices.

In this work, we analyze the variant of the STEINER TREE problem
called TERMINAL CONNECTION problem (TCP), which imposes further
constraints on the non-terminal vertices of the sought connection tree T . A
non-terminal vertex is called linker if its degree in T is exactly 2, and it is
called router if its degree in T is at least 3. Given a graph G, a terminal
set W and two non-negative integers ℓ and r, TCP asks whether there is a
connection tree of G for W that contains at most ℓ linkers and at most r
routers.

TCP was shown to be NP-complete on strongly chordal graphs (Melo,
Figueiredo, and Souza, On the Terminal Connection Problem, LNCS 12607
(2021), 278–292), contrasting with the complexity of STEINER TREE,
which is known to be polynomial-time solvable on such graphs (White,
Farber, and Pulleyblank, Steiner trees, Connected Domination and Strongly
Chordal Graphs, Networks 15 (1985), 109–124). We extend this hardness
result for TCP by proving that the problem remains NP-complete on rooted
directed path graphs, a proper subclass of strongly chordal, that comprises
the vertex intersection graphs of directed paths in a rooted directed tree.
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Let D = (V,A) be a digraph. The problem of when a given digraph D con-
tains a subdivision of a fixed digraph F with parity in each arc is considered.
A subdivision of a digraph F , also called an F-subdivision, is a digraph ob-
tained from F by replacing each arc ab of F by a directed (a,b)-path. The
parity over each arc ab is binary (0,1), 0 for even and 1 for odd. The parity
indicates whether the length of the path that is generated by subdivisions in
each arc is even or odd. In this paper, we studied the complexity of finding
a subdivision with given parity for particular cases of F . For directed paths,
we generalize existent results to show that it is NP-complete to find an odd
path Pk between two prescribed vertices [3] and polynomial-time solvable
if the vertices are not given, for fixed k [1]. For directed spiders, we use the
same approach as in directed paths. We also consider the case of F being a
directed cycle. We study that the problem is polynomial-time solvable for
the special case where F is a C3 [2]. The general case of F being a Ck, for
an even k, remains an open case.

References
[1] Bang-Jensen, Jørgen; Havet, Frédéric; and A. Karolinna Maia, Finding a
subdivision of a digraph, Theoretical Computer Science, Volume 562, (2015),
283–303.
[2] Galluccio, Anna and Loebl, Martin, Even Directed Cycles in H-Free Digraphs,
Journal of Algorithms, Elsevier, Volume 27, (1998), 26–41.
[3] Lapaugh, Andrea S. and Papadimitriou, Christos H., The even-path problem
for graphs and digraphs, Networks, Volume 14 (4), (1984), 507–513.
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Let
−→
G = (V,A) be an oriented graph. An oriented k-coloring of

−→
G is a

partition of V into k color classes such that there is no pair of adjacent
vertices belonging to the same class and all the arcs between a pair of
color classes have the same orientation. The smallest k such that

−→
G ad-

mits an oriented k-coloring is the oriented chromatic number χo(
−→
G ) of

−→
G .

We say that R ⊆ V (
−→
G ) is an absolute oriented clique (Klostermeyer and

Macgillivray (2004)) whether χo(R) = |R|. The absolute oriented clique
number ωao(

−→
G ) is the size of a maximum absolute oriented clique of

−→
G .

Given x,y ∈ V (
−→
G ) the directed distance

−→
d −→

G (x,y) = min{k,∞}, where k
is the number of arcs in a shortest path from x to y. The weak directed dis-
tance d−→

G (x,y) = min{
−→
d −→

G (x,y),
−→
d −→

G (y,x)}. A set R ⊆V (
−→
G ) is an relative

oriented clique (Nandy et al. (2016)) if for each pair x,y ∈ R, d−→
G (x,y)≤ 2.

The relative oriented clique number ωro(
−→
G ) = max{|R|}, where R is an rel-

ative oriented clique of
−→
G . Given an integer k ≥ 0, deciding if ωro(

−→
G )≥ k

is NP-complete (Das et al. (2018)). In this work we show that deciding if
ωao(

−→
G ) ≥ k is NP-complete and that unless P = NP, there is no polyno-

mial time ε-approximation for ωao within a factor of nε for some ε > 0.
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The Maximum Clique problem (MC) is a fundamental NP-hard problem
which is inapproximable to within a factor of n1−ε , for any ε > 0 unless
P = NP. Its decision version is also W[1]-complete under the natural
parameterization. Despite its difficulty, there are reports of exact algorithms
being able to solve instances of MC of practical interest and considerable
size in several application domains quite satisfactorily. Züge and Carmo
(2018) approached this theoretical-experimental dichotomy and conclude
that, an instance of MC on a graph G can be solved by tackling O(C(G))
subinstances, where C(G) is the number of cliques in G. We note that, when
G ∼ G (n, p), we have C(G) = nO(logn) with high probability. It follows that
with high probability, an instance of MC whose graph G is based on the
G (n, p) model can be solved in quasi-polynomial time.

Aiming to find instances which are harder than the random graph model,
we study and benchmark a transformation based on a result of Cornaz and
Jost (2008) that maps a graph G into a graph G∗ where each proper coloring
of G is associated with a clique in G∗. We prove that beginning with a
random graph G, one can build G∗ which has NΘ(

√
N) expected number of

cliques, where N = |V (G∗)|. Besides providing a family of harder instances
for MC for enumeration algorithms, it gives an intuition that solving the
Vertex Coloring problem should be harder than solving MC on G (n, p).

Moreover, we add to Lavnikevich’s (2013) result which presents a fam-
ily of graphs that demands exponential time to be solved by B&B methods
whose sole upper bound is the chromatic number, which are amongst the
best algorithms for the MC. We show a simple but powerful heuristic which
solves these instances in polynomial time and provide a randomized con-
struction that protects these instances against this heuristic.
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Um grafo G é k-total colorível se existe uma atribuição de k cores aos
vértices e arestas do grafo de modo que elementos adjacentes ou incidentes
recebam cores distintas. O menor valor de k tal que G é k-total colorível é
chamado de número cromático total e é denotado por χ ′′(G). A Conjectura
da Coloração Total (TCC) pressupõe que ∆ + 1 ≤ χ ′′(G) ≤ ∆ + 2, para
todo grafo G, classificando os grafos em Tipo 1, χ ′′(G) = ∆ + 1 ou Tipo 2,
caso contrário. Em geral, determinar χ ′′(G) é NP-difícil (Sánchez-Arroyo,
1989). G é split quando V (G) é particionável em uma clique e um conjunto
independente. Os grafos split satisfazem a TCC (Chen, Fu and Ko, 1995),
mas determinar χ ′′ para a classe é um problema em aberto, solucionado
apenas para algumas subclasses de split (Chen, Fu and Ko, 1995; Yap,
1989). G é t-admissível se admite uma árvore geradora na qual a maior
distância entre vértices adjacentes de G é t (Cai and Corneil, 1995). O
menor valor de t tal que G é t-admissível é σ(G). Grafos split são 3-
admissíveis (Panda and Das, 2010), o que particiona a classe em: split com
σ(G) = 1 (árvores), σ(G) = 2 ou 3. Neste trabalho, mostramos que um
grafo G split com σ(G) = 2 é Tipo 2 sse existe H = G[N[v]], para algum
v ∈V (G),d(v) = ∆ tal que |E(H)|≥ ⌊ |V (H)|

2 ⌋∆ . Além disso, apresentamos
um algoritmo eficiente para colorir grafos split com σ(G) = 2 que são
Tipo 1.
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Neighbour-distinguishing edge-labelling of powers of paths

L. G. S. Gonzaga 1,∗ C. N. Campos 1
1 Institute of Computing - University of Campinas

Keywords: graph labellings; powers of paths; 1,2,3-Conjecture

For a simple graph G with vertex set V (G) and edge set E(G), a pair (π,Cπ)
is a neighbour-distinguishing {1, . . . ,k}-edge-labelling if π :E(G)→ {1, . . . ,k}
such that, for every v ∈V (G), Cπ(v) =

∑
u∈N(v) π(uv) and Cπ(x) ̸=Cπ(y)

for every edge xy ∈ E(G). The least k for which it has been shown that ev-
ery graph admits a neighbour-distinguishing {1,2, . . . ,k}-edge-labelling is
five. The 1,2,3-Conjecture, proposed in 2004 by Karoński et al., states that
every graph has a neighbour-distinguishing {1,2,3}-edge-labelling. This
conjecture has been verified for a few classes of graphs, such as 3-chromatic
graphs (Karoński et al. 2014), graphs in which every cycle is divisible by
four (Khatirinejad, et al. 2011), complete multipartite graphs, and split
graphs (Luiz et al. 2018).

Observing that there exist graphs that admit a neighbour-distinguishing
{1,2}-edge-labelling, another interesting problem, also proposed by Karoński
et al., is the characterization of such graphs. In 2011, Dudek and Wajk
proved that deciding whether an arbitrary graph G admits a neighbour-
distinguishing {1,2}-edge-labelling is NP-complete. Indeed, this problem
proved to be challenging even for bipartite graphs. In 2016, Thomassen,
Wu and Zhang proved that the only bipartite graphs that need labels 1, 2,
3 are precisely odd multi-cacti. In 2017, Luiz and Campos verified the
1,2,3-Conjecture for powers of paths and conjectured that a neighbour-
distinguishing {1,2}-edge-labelling could be built for powers of paths not
isomorphic to complete graphs. In this work, we prove this conjecture.
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Hunting a conformable fullerene nanodisc that is not
4-total colorable

M. da Cruz 1,∗ C. Figueiredo 1 D. Sasaki 2

M. Tovar 2 D. Nicodemos 3
1 Rio de Janeiro Federal University (UFRJ)
2 Rio de Janeiro State University (UERJ)

3 Colégio Pedro II (CPII)

Keywords: Total Coloring, Fullerene Nanodiscs, Conformable Graphs

Fullerene nanodiscs Dr are mathematical models for carbon-based molecu-
les experimentally found in the early eighties, which are cubic, 3-connected,
planar graphs with pentagonal and hexagonal faces. The planar embedding
of Dr has its faces arranged into layers, one layer next to the nearest previ-
ous layer starting from a hexagonal cover until we reach the other hexagonal
cover. The distance between the inner (outer) layer and the central layer,
where lie 12 pentagonal faces, is given by the radius parameter r ≥ 2.

A total coloring of a graph assigns colors to the vertices and edges such
that adjacent or incident elements have different colors. The long-standing
Total Coloring Conjecture is settled for cubic graphs, implying that every
cubic graph admits a 5-total coloring. However, the recognition of 4-total
colorable cubic graphs is a challenging problem. Since every known cubic
graph that is not 4-total colorable has girth at most 4, it has been conjectured
that every cubic graph with girth at least 5 is 4-total colorable. A necessary
step toward proving that a cubic graph admits a 4-total coloring is to define
a conformable coloring, which is a 4-vertex coloring where the cardinality
of each vertex color class has the same parity as the cardinality of the
entire vertex set. A graph that admits a conformable coloring is called
conformable.

We prove that every fullerene nanodisc is conformable. Although every
conformable coloring we were able to exhibit does extend to a 5-total col-
oring, we are still looking for a suitable conformable coloring that might
extend to the desired 4-total coloring. In parallel with these investiga-
tions, we present combinatorial contributions referring to the structure of
fullerene nanodiscs.
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A New Bound for the Sum of Squares of Degrees in a
Class 2 Graph†

T. H. F. M. Cunha 1,∗ L. M. Zatesko 1
1 Federal University of Technology — Paraná, Brazil

Keywords: Coloring of graphs and hypergraphs (MSC 05C15), Edge sub-
sets with special properties (MSC 05C70), Vertex degrees (MSC 05C07)

Let G be a simple graph. For v ∈V (G), the degree of v and the set of neigh-
bors of v are denoted d(v) and N(v), respectively. The maximum degree of
G is denoted ∆ . The majors of G are its vertices with degree ∆ . The majors
u with

∑
v∈N(u) d(v)≥ ∆ 2−∆ +2 are the proper majors of G. If this sum

is equal to (less than) ∆ 2−∆ + 1, then u is said to be tightly (strictly) non-
proper. The hard core of G is the subgraph of G induced by all its proper
and tightly non-proper majors. By Vizing (1964), the chromatic index of G
is ∆ or ∆ + 1, in which case G is Class 1 or Class 2, respectively. A critical
graph is a connected Class 2 graph that becomes Class 1 by the removal
of any edge. Vizing’s recoloring procedure yields a condition, known as
Vizing’s Adjacency Lemma (VAL), about the minimum number of majors
adjacent to every vertex of a critical graph. Zatesko et al. (2020) intro-
duced an extended recoloring procedure, with which we have obtained an
Extended Adjacency Lemma (EAL), establishing a condition on the mini-
mum number of majors of the hard core adjacent to every vertex. As VAL
also yields a lower bound for the the sum of degrees of a Class 2 graph G,
with EAL we obtain a new lower bound for the sum of squares of degrees
of G. For all ∆ ≥ 6, our bound is better from the bound achieved from the
literature by simply combining Vizing’s result and the lower bound for the
sum of squares of degrees by Edwards (1977). For instance,

∑
u∈V

d2(u)≥ 46∆3+ 144∆2−(4∆2+24∆ −9) 3
2

54
−(∆ − 1) (our bound)

(for ∆ ≥ 6)
≥ 4((3∆2+6∆ − 1)/8)2

∆ + 1
. (literature)

†Partially supported by CNPq (428941/2016-8 and 420079/2021-1).
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